Suppr超能文献

可转化兼性嗜热脂肪芽孢杆菌嗜热栖热菌NUB3621作为代谢工程的宿主菌株。

Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering.

作者信息

Blanchard Kristen, Robic Srebrenka, Matsumura Ichiro

机构信息

Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, room 4119, Atlanta, GA, 30322, USA.

出版信息

Appl Microbiol Biotechnol. 2014 Aug;98(15):6715-23. doi: 10.1007/s00253-014-5746-z. Epub 2014 May 2.

Abstract

Metabolic engineers develop inexpensive enantioselective syntheses of high-value compounds, but their designs are sometimes confounded by the misfolding of heterologously expressed proteins. Geobacillus stearothermophilus NUB3621 is a readily transformable facultative thermophile. It could be used to express and properly fold proteins derived from its many mesophilic or thermophilic Bacillaceae relatives or to direct the evolution of thermophilic variants of mesophilic proteins. Moreover, its capacity for high-temperature growth should accelerate chemical transformation rates in accordance with the Arrhenius equation and reduce the risks of microbial contamination. Its tendency to sporulate in response to nutrient depletion lowers the costs of storage and transportation. Here, we present a draft genome sequence of G. stearothermophilus NUB3621 and describe inducible and constitutive expression plasmids that function in this organism. These tools will help us and others to exploit the natural advantages of this system for metabolic engineering applications.

摘要

代谢工程师致力于开发高价值化合物的廉价对映选择性合成方法,但其设计有时会因异源表达蛋白的错误折叠而受到干扰。嗜热栖热放线菌NUB3621是一种易于转化的兼性嗜热菌。它可用于表达并正确折叠源自其众多嗜温或嗜热芽孢杆菌科亲属的蛋白质,或指导嗜温蛋白嗜热变体的进化。此外,其高温生长能力应能根据阿累尼乌斯方程加快化学转化速率,并降低微生物污染风险。它在营养耗尽时形成芽孢的倾向降低了储存和运输成本。在此,我们展示了嗜热栖热放线菌NUB3621的基因组草图序列,并描述了在该生物体中起作用的诱导型和组成型表达质粒。这些工具将帮助我们及其他人利用该系统的天然优势用于代谢工程应用。

相似文献

1
Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering.
Appl Microbiol Biotechnol. 2014 Aug;98(15):6715-23. doi: 10.1007/s00253-014-5746-z. Epub 2014 May 2.
2
Plasmid maintenance in Bacillus stearothermophilus is strain-dependent.
FEMS Microbiol Lett. 1992 Jun 15;72(3):203-8. doi: 10.1016/0378-1097(92)90463-x.
3
Phylogenetic analysis of transformable strains of thermophilic Bacillus species.
FEMS Microbiol Lett. 1999 Mar 1;172(1):85-90. doi: 10.1111/j.1574-6968.1999.tb13454.x.
4
Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA.
J Gen Microbiol. 1989 May;135(5):1315-24. doi: 10.1099/00221287-135-5-1315.
6
Comparative Genomic Analysis of a Thermophilic Protease-Producing Strain H6.
Genes (Basel). 2023 Feb 11;14(2):466. doi: 10.3390/genes14020466.
7
Transformation of chenodeoxycholic acid by thermophilic Geobacillus stearothermophilus.
Biotechnol Appl Biochem. 2011 Jul-Aug;58(4):250-5. doi: 10.1002/bab.34. Epub 2011 Jul 27.
9
Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization.
FEMS Microbiol Lett. 1999 Jul 1;176(1):147-53. doi: 10.1111/j.1574-6968.1999.tb13655.x.
10
Isolation of a thermostable enzyme variant by cloning and selection in a thermophile.
Proc Natl Acad Sci U S A. 1986 Feb;83(3):576-80. doi: 10.1073/pnas.83.3.576.

引用本文的文献

1
The first thermophilic phage display system.
Mater Today Bio. 2025 Jun 10;33:101960. doi: 10.1016/j.mtbio.2025.101960. eCollection 2025 Aug.
2
Development of specialized devices for microbial experimental evolution.
Dev Growth Differ. 2024 Sep;66(7):372-380. doi: 10.1111/dgd.12940. Epub 2024 Aug 26.
3
The Diversity of Bacteriophages in Hot Springs.
Methods Mol Biol. 2024;2738:73-88. doi: 10.1007/978-1-0716-3549-0_4.
6
Genomic insights on fighting bacterial wilt by a novel Bacillus amyloliquefaciens strain Cas02.
Microb Biotechnol. 2022 Apr;15(4):1152-1167. doi: 10.1111/1751-7915.13925. Epub 2021 Sep 27.
7
A plasmid vector that directs hyperproduction of recombinant proteins in the thermophiles Geobacillus species.
Extremophiles. 2020 Jan;24(1):147-156. doi: 10.1007/s00792-019-01142-3. Epub 2019 Nov 7.
8
Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae.
Microorganisms. 2018 May 10;6(2):42. doi: 10.3390/microorganisms6020042.
9
In vivo selection of sfGFP variants with improved and reliable functionality in industrially important thermophilic bacteria.
Biotechnol Biofuels. 2018 Jan 17;11:8. doi: 10.1186/s13068-017-1008-5. eCollection 2018.
10
Insights into the Geobacillus stearothermophilus species based on phylogenomic principles.
BMC Microbiol. 2017 Jun 26;17(1):140. doi: 10.1186/s12866-017-1047-x.

本文引用的文献

1
Metabolic engineering: past and future.
Annu Rev Chem Biomol Eng. 2013;4:259-88. doi: 10.1146/annurev-chembioeng-061312-103312. Epub 2013 Mar 27.
3
Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids.
J Microbiol Biotechnol. 2012 Sep;22(9):1279-87. doi: 10.4014/jmb.1203.03023.
6
Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids.
Biotechniques. 2010 Jun;48(6):463-5. doi: 10.2144/000113418.
7
Genomics. Genome project standards in a new era of sequencing.
Science. 2009 Oct 9;326(5950):236-7. doi: 10.1126/science.1180614.
8
ABySS: a parallel assembler for short read sequence data.
Genome Res. 2009 Jun;19(6):1117-23. doi: 10.1101/gr.089532.108. Epub 2009 Feb 27.
9
A genomic distance based on MUM indicates discontinuity between most bacterial species and genera.
J Bacteriol. 2009 Jan;191(1):91-9. doi: 10.1128/JB.01202-08. Epub 2008 Oct 31.
10
Development of a versatile shuttle vector for gene expression in Geobacillus spp.
Plasmid. 2008 Jul;60(1):45-52. doi: 10.1016/j.plasmid.2008.04.001. Epub 2008 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验