Suppr超能文献

张量回归及其在神经影像数据分析中的应用

Tensor Regression with Applications in Neuroimaging Data Analysis.

作者信息

Zhou Hua, Li Lexin, Zhu Hongtu

机构信息

Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203 ( hua

Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203.

出版信息

J Am Stat Assoc. 2013;108(502):540-552. doi: 10.1080/01621459.2013.776499.

Abstract

Classical regression methods treat covariates as a vector and estimate a corresponding vector of regression coefficients. Modern applications in medical imaging generate covariates of more complex form such as multidimensional arrays (tensors). Traditional statistical and computational methods are proving insufficient for analysis of these high-throughput data due to their ultrahigh dimensionality as well as complex structure. In this article, we propose a new family of tensor regression models that efficiently exploit the special structure of tensor covariates. Under this framework, ultrahigh dimensionality is reduced to a manageable level, resulting in efficient estimation and prediction. A fast and highly scalable estimation algorithm is proposed for maximum likelihood estimation and its associated asymptotic properties are studied. Effectiveness of the new methods is demonstrated on both synthetic and real MRI imaging data.

摘要

经典回归方法将协变量视为向量,并估计相应的回归系数向量。医学成像中的现代应用产生了更复杂形式的协变量,如多维数组(张量)。由于这些高通量数据的超高维度以及复杂结构,传统的统计和计算方法已被证明不足以对其进行分析。在本文中,我们提出了一类新的张量回归模型,该模型有效地利用了张量协变量的特殊结构。在此框架下,超高维度被降低到可管理的水平,从而实现了高效的估计和预测。我们提出了一种快速且高度可扩展的估计算法用于最大似然估计,并研究了其相关的渐近性质。新方法的有效性在合成和真实的MRI成像数据上均得到了验证。

相似文献

1
Tensor Regression with Applications in Neuroimaging Data Analysis.
J Am Stat Assoc. 2013;108(502):540-552. doi: 10.1080/01621459.2013.776499.
2
Tucker Tensor Regression and Neuroimaging Analysis.
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
3
TENSOR GENERALIZED ESTIMATING EQUATIONS FOR LONGITUDINAL IMAGING ANALYSIS.
Stat Sin. 2019;29(4):1977-2005. doi: 10.5705/ss.202017.0153.
4
TENSOR QUANTILE REGRESSION WITH LOW-RANK TENSOR TRAIN ESTIMATION.
Ann Appl Stat. 2024 Jun;18(2):1294-1318. doi: 10.1214/23-aoas1835. Epub 2024 Apr 5.
5
Bayesian tensor logistic regression with applications to neuroimaging data analysis of Alzheimer's disease.
Stat Methods Med Res. 2022 Dec;31(12):2368-2382. doi: 10.1177/09622802221122409. Epub 2022 Sep 25.
6
TPRM: TENSOR PARTITION REGRESSION MODELS WITH APPLICATIONS IN IMAGING BIOMARKER DETECTION.
Ann Appl Stat. 2018 Sep;12(3):1422-1450. doi: 10.1214/17-AOAS1116. Epub 2018 Sep 11.
7
Tensor canonical correlation analysis.
Stat. 2020;8(1). doi: 10.1002/sta4.253. Epub 2020 Jan 2.
8
Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications.
Neuroimage. 2017 Jan 1;144(Pt A):35-57. doi: 10.1016/j.neuroimage.2016.08.027. Epub 2016 Sep 22.
9
Regularized matrix regression.
J R Stat Soc Series B Stat Methodol. 2014 Mar 1;76(2):463-483. doi: 10.1111/rssb.12031.
10
A tensor based varying-coefficient model for multi-modal neuroimaging data analysis.
IEEE Trans Signal Process. 2024;72:1607-1619. doi: 10.1109/tsp.2024.3375768. Epub 2024 Mar 11.

引用本文的文献

1
Unveiling hidden sources of dynamic functional connectome through a novel regularized blind source separation approach.
Imaging Neurosci (Camb). 2024 Jul 12;2. doi: 10.1162/imag_a_00220. eCollection 2024.
2
DYNAMIC PREDICTION WITH MULTIVARIATE LONGITUDINAL OUTCOMES AND LONGITUDINAL MAGNETIC RESONANCE IMAGING DATA.
Ann Appl Stat. 2025 Mar;19(1):505-528. doi: 10.1214/24-aoas1970. Epub 2025 Mar 17.
3
Low-Rank Tensor Encoding Models Decompose Natural Speech Comprehension Processes.
bioRxiv. 2025 Jun 3:2025.06.02.657514. doi: 10.1101/2025.06.02.657514.
4
LOW-RANK LONGITUDINAL FACTOR REGRESSION WITH APPLICATION TO CHEMICAL MIXTURES.
Ann Appl Stat. 2025 Mar;19(1):769-797. doi: 10.1214/24-aoas1988. Epub 2025 Mar 17.
6
Mode-wise principal subspace pursuit and matrix spiked covariance model.
J R Stat Soc Series B Stat Methodol. 2024 Sep 2;87(1):232-255. doi: 10.1093/jrsssb/qkae088. eCollection 2025 Feb.
7
Bayesian thresholded modeling for integrating brain node and network predictors.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae048.
8
Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation.
Am Stat. 2024;78(4):379-390. doi: 10.1080/00031305.2024.2308821. Epub 2024 Feb 26.
9
A tensor based varying-coefficient model for multi-modal neuroimaging data analysis.
IEEE Trans Signal Process. 2024;72:1607-1619. doi: 10.1109/tsp.2024.3375768. Epub 2024 Mar 11.
10
Heterogeneity Analysis on Multi-state Brain Functional Connectivity and Adolescent Neurocognition.
J Am Stat Assoc. 2024;119(546):851-863. doi: 10.1080/01621459.2024.2311363. Epub 2024 Mar 8.

本文引用的文献

1
Spatio-Spectral Mixed Effects Model for Functional Magnetic Resonance Imaging Data.
J Am Stat Assoc. 2012;107(498):568-577. doi: 10.1080/01621459.2012.664503.
2
Matrix variate logistic regression model with application to EEG data.
Biostatistics. 2013 Jan;14(1):189-202. doi: 10.1093/biostatistics/kxs023. Epub 2012 Jul 2.
3
Multiscale Adaptive Regression Models for Neuroimaging Data.
J R Stat Soc Series B Stat Methodol. 2011 Sep;73(4):559-578. doi: 10.1111/j.1467-9868.2010.00767.x.
4
Imaging genetics and development: challenges and promises.
Hum Brain Mapp. 2010 Jun;31(6):838-51. doi: 10.1002/hbm.21047.
5
Structural adaptive segmentation for statistical parametric mapping.
Neuroimage. 2010 Aug 15;52(2):515-23. doi: 10.1016/j.neuroimage.2010.04.241. Epub 2010 Apr 24.
6
Two-stage decompositions for the analysis of functional connectivity for fMRI with application to Alzheimer's disease risk.
Neuroimage. 2010 Jul 1;51(3):1140-9. doi: 10.1016/j.neuroimage.2010.02.081. Epub 2010 Mar 19.
7
Sparse logistic regression for whole-brain classification of fMRI data.
Neuroimage. 2010 Jun;51(2):752-64. doi: 10.1016/j.neuroimage.2010.02.040. Epub 2010 Feb 24.
8
Modalities, modes, and models in functional neuroimaging.
Science. 2009 Oct 16;326(5951):399-403. doi: 10.1126/science.1174521.
9
Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset.
Neuroimage. 2009 Oct 15;48(1):138-49. doi: 10.1016/j.neuroimage.2009.05.056. Epub 2009 May 27.
10
Functional generalized linear models with images as predictors.
Biometrics. 2010 Mar;66(1):61-9. doi: 10.1111/j.1541-0420.2009.01233.x. Epub 2009 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验