Vergara Victor M, Ulloa Alvaro, Calhoun Vince D, Boutte David, Chen Jiayu, Liu Jingyu
The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
Neuroimage. 2014 Sep;98:386-94. doi: 10.1016/j.neuroimage.2014.04.060. Epub 2014 Apr 30.
Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications.
多模态数据分析技术,如并行独立成分分析(pICA),在神经科学、医学成像和基因研究中至关重要。pICA算法允许同时分解多达两种数据模态,比单独的ICA分解具有更好的性能,并能够发现模态之间的联系。然而,数据采集技术的进步使得从每个受试者收集两种以上的数据模态变得更加容易。常见测量模态的例子包括基因信息、结构磁共振成像(MRI)和功能MRI。为了充分利用可用数据,这项工作扩展了pICA方法,将三种模态纳入一个综合分析中。模拟结果表明,三向pICA在识别模态之间的成对联系和估计独立成分方面的性能,这些独立成分比pICA或单独的ICA分析所发现的成分更接近真实来源。此外,三向pICA算法被应用于从一项研究酒精依赖的基因效应的实验中获得的真实实验数据。所考虑的数据模态包括功能MRI(酒精暴露范式期间的对比图像)、结构MRI的灰质浓度图像和基因单核苷酸多态性(SNP)。三向pICA方法识别出一个SNP成分(指向与脑功能和精神障碍相关的基因,包括BDNF、GRIN2B和NRG1)、一个与楔前叶区域激活增加相关的功能成分以及一个包含默认模式网络和尾状核一部分的灰质成分之间的联系。尽管这些发现需要进一步验证,但模拟和体内结果验证了本文提出的三向pICA算法是生物医学数据融合应用中的一个有用工具。