Suppr超能文献

一种用于分析遗传学、脑结构和脑功能之间联系的三路并行独立成分分析方法。

A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function.

作者信息

Vergara Victor M, Ulloa Alvaro, Calhoun Vince D, Boutte David, Chen Jiayu, Liu Jingyu

机构信息

The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.

The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Neuroimage. 2014 Sep;98:386-94. doi: 10.1016/j.neuroimage.2014.04.060. Epub 2014 Apr 30.

Abstract

Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications.

摘要

多模态数据分析技术,如并行独立成分分析(pICA),在神经科学、医学成像和基因研究中至关重要。pICA算法允许同时分解多达两种数据模态,比单独的ICA分解具有更好的性能,并能够发现模态之间的联系。然而,数据采集技术的进步使得从每个受试者收集两种以上的数据模态变得更加容易。常见测量模态的例子包括基因信息、结构磁共振成像(MRI)和功能MRI。为了充分利用可用数据,这项工作扩展了pICA方法,将三种模态纳入一个综合分析中。模拟结果表明,三向pICA在识别模态之间的成对联系和估计独立成分方面的性能,这些独立成分比pICA或单独的ICA分析所发现的成分更接近真实来源。此外,三向pICA算法被应用于从一项研究酒精依赖的基因效应的实验中获得的真实实验数据。所考虑的数据模态包括功能MRI(酒精暴露范式期间的对比图像)、结构MRI的灰质浓度图像和基因单核苷酸多态性(SNP)。三向pICA方法识别出一个SNP成分(指向与脑功能和精神障碍相关的基因,包括BDNF、GRIN2B和NRG1)、一个与楔前叶区域激活增加相关的功能成分以及一个包含默认模式网络和尾状核一部分的灰质成分之间的联系。尽管这些发现需要进一步验证,但模拟和体内结果验证了本文提出的三向pICA算法是生物医学数据融合应用中的一个有用工具。

相似文献

1
A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function.
Neuroimage. 2014 Sep;98:386-94. doi: 10.1016/j.neuroimage.2014.04.060. Epub 2014 Apr 30.
2
Three-way parallel independent component analysis for imaging genetics using multi-objective optimization.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6651-4. doi: 10.1109/EMBC.2014.6945153.
4
5
Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition.
J Neurosci Methods. 2015 Dec 30;256:127-40. doi: 10.1016/j.jneumeth.2015.08.023. Epub 2015 Sep 4.
6
The effect of model order selection in group PICA.
Hum Brain Mapp. 2010 Aug;31(8):1207-16. doi: 10.1002/hbm.20929.
8
A unified framework for group independent component analysis for multi-subject fMRI data.
Neuroimage. 2008 Sep 1;42(3):1078-93. doi: 10.1016/j.neuroimage.2008.05.008. Epub 2008 May 16.
10
Constrained temporal parallel decomposition for EEG-fMRI fusion.
J Neural Eng. 2019 Feb;16(1):016017. doi: 10.1088/1741-2552/aaefda. Epub 2018 Nov 9.

引用本文的文献

1
Functionally Adaptive Structural Basis Sets of the Brain: A Dynamic Fusion Approach.
Hum Brain Mapp. 2025 Aug 1;46(11):e70302. doi: 10.1002/hbm.70302.
2
aNy-way ICA and its application to estimate cortico-thalamo-cerebellar functional links in schizophrenia.
bioRxiv. 2025 Jun 6:2025.06.02.657541. doi: 10.1101/2025.06.02.657541.
3
Links between brain structure and function in children with autism spectrum disorder by parallel independent component analysis.
Brain Imaging Behav. 2025 Feb;19(1):124-137. doi: 10.1007/s11682-024-00957-9. Epub 2024 Nov 20.
4
Multi-modal intermediate integrative methods in neuropsychiatric disorders: A review.
Comput Struct Biotechnol J. 2022 Nov 8;20:6149-6162. doi: 10.1016/j.csbj.2022.11.008. eCollection 2022.
5
6
Disjoint subspaces for common and distinct component analysis: Application to the fusion of multi-task FMRI data.
J Neurosci Methods. 2021 Jul 1;358:109214. doi: 10.1016/j.jneumeth.2021.109214. Epub 2021 May 3.
7
An Overview of ICA/BSS-Based Application to Alzheimer's Brain Signal Processing.
Biomedicines. 2021 Apr 6;9(4):386. doi: 10.3390/biomedicines9040386.
8
Multiview Diffusion Map Improves Prediction of Fluid Intelligence With Two Paradigms of fMRI Analysis.
IEEE Trans Biomed Eng. 2021 Aug;68(8):2529-2539. doi: 10.1109/TBME.2020.3048594. Epub 2021 Jul 16.
9
aNy-way Independent Component Analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1770-1774. doi: 10.1109/EMBC44109.2020.9175277.
10
Canonical Correlation Analysis of Imaging Genetics Data Based on Statistical Independence and Structural Sparsity.
IEEE J Biomed Health Inform. 2020 Sep;24(9):2621-2629. doi: 10.1109/JBHI.2020.2972581. Epub 2020 Feb 10.

本文引用的文献

1
BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1.
Neuromolecular Med. 2014 Mar;16(1):161-174. doi: 10.1007/s12017-013-8270-x. Epub 2013 Oct 10.
2
Neuregulin1 signaling promotes dendritic spine growth through kalirin.
J Neurochem. 2013 Sep;126(5):625-35. doi: 10.1111/jnc.12330. Epub 2013 Jun 27.
3
Neuregulin-1/ErbB4 signaling regulates Kv4.2-mediated transient outward K+ current through the Akt/mTOR pathway.
Am J Physiol Cell Physiol. 2013 Jul 15;305(2):C197-206. doi: 10.1152/ajpcell.00041.2013. Epub 2013 May 22.
4
ICA order selection based on consistency: application to genotype data.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:360-3. doi: 10.1109/EMBC.2012.6345943.
6
A large scale multivariate parallel ICA method reveals novel imaging-genetic relationships for Alzheimer's disease in the ADNI cohort.
Neuroimage. 2012 Apr 15;60(3):1608-21. doi: 10.1016/j.neuroimage.2011.12.076. Epub 2012 Jan 8.
7
SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability.
Neuroimage. 2012 Feb 15;59(4):4160-7. doi: 10.1016/j.neuroimage.2011.11.088. Epub 2011 Dec 8.
8
A review of multivariate methods for multimodal fusion of brain imaging data.
J Neurosci Methods. 2012 Feb 15;204(1):68-81. doi: 10.1016/j.jneumeth.2011.10.031. Epub 2011 Nov 11.
9
Identifying neurobiological phenotypes associated with alcohol use disorder severity.
Neuropsychopharmacology. 2011 Sep;36(10):2086-96. doi: 10.1038/npp.2011.99. Epub 2011 Jun 15.
10
Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model.
Neuroimage. 2011 Aug 1;57(3):839-55. doi: 10.1016/j.neuroimage.2011.05.055. Epub 2011 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验