Suppr超能文献

使用数字信号处理对新设计的非骨水泥股骨柄进行初始稳定性识别。

Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

作者信息

Baharuddin Mohd Yusof, Salleh Sh-Hussain, Hamedi Mahyar, Zulkifly Ahmad Hafiz, Lee Muhammad Hisyam, Mohd Noor Alias, Harris Arief Ruhullah A, Abdul Majid Norazman

机构信息

Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia ; Centre for Biomedical Engineering Transportation Research Alliance, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.

Centre for Biomedical Engineering Transportation Research Alliance, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.

出版信息

Biomed Res Int. 2014;2014:478248. doi: 10.1155/2014/478248. Epub 2014 Apr 1.

Abstract

Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.

摘要

应力遮挡和微动是决定新设计的非骨水泥型股骨柄成功与否的两个主要问题。实验验证与有限元分析(FEA)的相关性通常用于评估股骨柄在股骨髓腔内的应力分布和固定稳定性。本文重点研究了使用支持向量机(SVM)进行特征提取和模式识别以确定植入物初始稳定性的应用。我们使用复合股骨,在干骺端区域用三轴应变片测量应变,在近端和远端用线性可变差动变压器测量微动。均方根技术用于为分类器提供输入,该分类器提供振幅的最大似然估计,径向基函数用作核参数,将数据集映射到可分离的超平面。结果表明,使用SVM对应变和微动的模式识别准确率均为100%。这表明在生物力学测试中,数字信号处理(DSP)可用于以高模式识别准确率确定股骨柄的初始稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4015/3988726/d7bdbeeb0ad3/BMRI2014-478248.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验