Miyakawa Tomoki, Satoh Masaki, Miura Hiroaki, Tomita Hirofumi, Yashiro Hisashi, Noda Akira T, Yamada Yohei, Kodama Chihiro, Kimoto Masahide, Yoneyama Kunio
Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan.
1] Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan [2] Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8568, Japan.
Nat Commun. 2014 May 6;5:3769. doi: 10.1038/ncomms4769.
Global cloud/cloud system-resolving models are perceived to perform well in the prediction of the Madden-Julian Oscillation (MJO), a huge eastward -propagating atmospheric pulse that dominates intraseasonal variation of the tropics and affects the entire globe. However, owing to model complexity, detailed analysis is limited by computational power. Here we carry out a simulation series using a recently developed supercomputer, which enables the statistical evaluation of the MJO prediction skill of a costly new-generation model in a manner similar to operational forecast models. We estimate the current MJO predictability of the model as 27 days by conducting simulations including all winter MJO cases identified during 2003-2012. The simulated precipitation patterns associated with different MJO phases compare well with observations. An MJO case captured in a recent intensive observation is also well reproduced. Our results reveal that the global cloud-resolving approach is effective in understanding the MJO and in providing month-long tropical forecasts.
全球云/云系统解析模型被认为在预测马登-朱利安振荡(MJO)方面表现出色,MJO是一种巨大的向东传播的大气脉动,主导着热带地区的季节内变化并影响全球。然而,由于模型的复杂性,详细分析受到计算能力的限制。在此,我们使用一台最近开发的超级计算机进行了一系列模拟,这使得我们能够以类似于业务预报模型的方式对一个成本高昂的新一代模型的MJO预测技能进行统计评估。通过对2003年至2012年期间识别出的所有冬季MJO案例进行模拟,我们估计该模型当前的MJO可预报性为27天。与不同MJO阶段相关的模拟降水模式与观测结果比较吻合。最近一次密集观测中捕捉到的一个MJO案例也得到了很好的再现。我们的结果表明,全球云解析方法在理解MJO和提供长达一个月的热带预报方面是有效的。