Emaminejad Sam, Dutton Robert W, Davis Ronald W, Javanmard Mehdi
Dept. of Electrical Engineering, Stanford University, Stanford, CA, USA.
Lab Chip. 2014 Jun 21;14(12):2105-14. doi: 10.1039/c4lc00036f. Epub 2014 May 7.
In this work, we present a methodological approach to analyze an enhanced dielectrophoresis (DEP) system from both a circuit analysis and electrothermal view points. In our developed model, we have taken into account various phenomena and constraints such as voltage degradation (due to the presence of the protecting oxide layer), oxide breakdown, instrumentation limitations, and thermal effects. The results from this analysis are applicable generally to a wide variety of geometries and high voltage microsystems. Here, these design guidelines were applied to develop a robust electronic actuation system to perform a multiplexed bead-based protein assay. To carry out the multiplexed functionality, along a single microfluidic channel, an array of proteins is patterned, where each element is targeting a specific secondary protein coated on micron-sized beads in the subsequently introduced sample solution. Below each element of the array, we have a pair of addressable interdigitated electrodes. By selectively applying voltage at the terminals of each interdigitated electrode pair, the enhanced DEP, or equivalently 'ultra'-DEP (uDEP) force detaches protein-bound beads from each element of the array, one by one, without disturbing the bound beads in the neighboring regions. The detached beads can be quantified optically or electrically downstream. For proof of concept, we illustrated 16-plex actuation capability of our device to elute micron-sized beads that are bound to the surface through anti-IgG and IgG interaction which is on the same order of magnitude in strength as typical antibody-antigen interactions. In addition to its application in multiplexed protein analysis, our platform can be potentially utilized to statistically characterize the strength profile of biological bonds, since the multiplexed format allows for high throughput force spectroscopy using the array of uDEP devices, under the same buffer and assay preparation conditions.
在这项工作中,我们提出了一种方法,从电路分析和电热两个角度来分析增强型介电电泳(DEP)系统。在我们开发的模型中,我们考虑了各种现象和限制因素,如电压降(由于存在保护氧化层)、氧化物击穿、仪器限制和热效应。该分析结果通常适用于各种几何形状和高压微系统。在此,这些设计准则被应用于开发一个强大的电子驱动系统,以进行基于珠子的多重蛋白质检测。为了实现多重功能,沿着单个微流体通道,对一系列蛋白质进行图案化处理,其中每个元件针对随后引入的样品溶液中涂覆在微米大小珠子上的特定二级蛋白质。在阵列的每个元件下方,我们有一对可寻址的叉指电极。通过在每个叉指电极对的端子上选择性地施加电压,增强型DEP,即等效的“超”DEP(uDEP)力,将与蛋白质结合的珠子从阵列的每个元件上一个一个地分离出来,而不会干扰相邻区域中结合的珠子。分离出的珠子可以在下游通过光学或电学方法进行定量。为了验证概念,我们展示了我们的设备具有16重驱动能力,能够洗脱通过抗IgG和IgG相互作用与表面结合的微米大小的珠子,这种相互作用的强度与典型的抗体 - 抗原相互作用处于同一数量级。除了在多重蛋白质分析中的应用外,我们的平台还可以潜在地用于统计表征生物键的强度分布,因为多重格式允许在相同的缓冲液和检测制备条件下,使用uDEP设备阵列进行高通量力谱分析。