Suppr超能文献

数字病理切片中细胞核检测、分割和分类的方法:综述——现状和未来潜力

Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential.

出版信息

IEEE Rev Biomed Eng. 2014;7:97-114. doi: 10.1109/RBME.2013.2295804.

Abstract

Digital pathology represents one of the major evolutions in modern medicine. Pathological examinations constitute the gold standard in many medical protocols, and also play a critical and legal role in the diagnosis process. In the conventional cancer diagnosis, pathologists analyze biopsies to make diagnostic and prognostic assessments, mainly based on the cell morphology and architecture distribution. Recently, computerized methods have been rapidly evolving in the area of digital pathology, with growing applications related to nuclei detection, segmentation, and classification. In cancer research, these approaches have played, and will continue to play a key (often bottleneck) role in minimizing human intervention, consolidating pertinent second opinions, and providing traceable clinical information. Pathological studies have been conducted for numerous cancer detection and grading applications, including brain, breast, cervix, lung, and prostate cancer grading. Our study presents, discusses, and extracts the major trends from an exhaustive overview of various nuclei detection, segmentation, feature computation, and classification techniques used in histopathology imagery, specifically in hematoxylin-eosin and immunohistochemical staining protocols. This study also enables us to measure the challenges that remain, in order to reach robust analysis of whole slide images, essential high content imaging with diagnostic biomarkers and prognosis support in digital pathology.

摘要

数字病理学是现代医学的主要发展之一。病理检查构成了许多医学方案的金标准,在诊断过程中也起着关键和法律作用。在传统的癌症诊断中,病理学家通过分析活检来进行诊断和预后评估,主要基于细胞形态和结构分布。最近,计算机化方法在数字病理学领域迅速发展,与核检测、分割和分类相关的应用越来越多。在癌症研究中,这些方法已经并且将继续在最小化人工干预、整合相关的第二意见以及提供可追踪的临床信息方面发挥关键(通常是瓶颈)作用。已经对许多癌症检测和分级应用进行了病理研究,包括脑、乳腺、宫颈、肺和前列腺癌分级。我们的研究对组织病理学图像中使用的各种核检测、分割、特征计算和分类技术进行了全面的概述,讨论并提取了主要趋势,特别是在苏木精-伊红和免疫组织化学染色方案中。这项研究还使我们能够衡量仍然存在的挑战,以便实现对全幻灯片图像的稳健分析,对具有诊断生物标志物和预后支持的高内涵成像至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验