Suppr超能文献

预测肌肉骨骼肿瘤手术后严重不良事件的列线图:一项全国行政数据库分析

Nomogram predicting severe adverse events after musculoskeletal tumor surgery: analysis of a national administrative database.

作者信息

Ogura Koichi, Yasunaga Hideo, Horiguchi Hiromasa, Fushimi Kiyohide, Tanaka Sakae, Kawano Hirotaka

机构信息

Department of Orthopaedic Surgery, The University of Tokyo Hospital, Tokyo, Japan.

出版信息

Ann Surg Oncol. 2014 Oct;21(11):3564-71. doi: 10.1245/s10434-014-3760-0. Epub 2014 May 7.

Abstract

BACKGROUND

There have been no nationwide surveys of postoperative adverse events (AEs) after musculoskeletal tumor surgery focusing on their severity. Therefore, we developed a nomogram to predict severe AEs after musculoskeletal tumor surgery.

METHODS

We identified patients in the Diagnosis Procedure Combination database who underwent musculoskeletal tumor surgery during 2007-2012, and defined severe AEs as follows: (i) in-hospital mortality; (ii) postoperative medications including massive transfusion (≥1,400 mL), catecholamines, γ-globulin products, protease inhibitors, and medications for disseminated intravascular coagulation; and (iii) postoperative interventions consisting of mechanical ventilation, dialysis support, and cardiac support. Logistic regression models were used to address the occurrence of severe AEs.

RESULTS

Of 5,716 patients identified, 613 patients (10.7 %) had severe AEs. Multivariate analyses showed an inverse relationship between body mass index (BMI) and severe AEs (odds ratio 1.80 for BMI <18.50; p < 0.001) after adjustment for other significant factors, including sex, age, tumor location, Charlson comorbidity index, type of surgery, and duration of anesthesia. A nomogram and a calibration plot based on these results were well-fitted to predict the probability of severe AEs after musculoskeletal tumor surgery (concordance index 0.781).

CONCLUSIONS

We developed a nomogram predicting the probability of severe AEs after musculoskeletal tumor surgery. In addition, we clarified that underweight, but not overweight or obese, status was significantly associated with increased severe AEs after adjusting for patient background characteristics.

摘要

背景

目前尚无针对肌肉骨骼肿瘤手术后不良事件(AE)严重程度的全国性调查。因此,我们开发了一种列线图来预测肌肉骨骼肿瘤手术后的严重不良事件。

方法

我们在诊断程序组合数据库中识别出2007年至2012年期间接受肌肉骨骼肿瘤手术的患者,并将严重不良事件定义如下:(i)住院死亡率;(ii)术后用药,包括大量输血(≥1400毫升)、儿茶酚胺、γ-球蛋白制品、蛋白酶抑制剂以及用于弥散性血管内凝血的药物;(iii)术后干预措施,包括机械通气、透析支持和心脏支持。采用逻辑回归模型分析严重不良事件的发生情况。

结果

在识别出的5716例患者中,613例(10.7%)发生了严重不良事件。多变量分析显示,在调整了其他重要因素(包括性别、年龄、肿瘤位置、查尔森合并症指数、手术类型和麻醉持续时间)后,体重指数(BMI)与严重不良事件呈负相关(BMI<18.50时比值比为1.80;p<0.001)。基于这些结果绘制的列线图和校准图能够很好地预测肌肉骨骼肿瘤手术后严重不良事件的发生概率(一致性指数为0.781)。

结论

我们开发了一种列线图来预测肌肉骨骼肿瘤手术后严重不良事件的发生概率。此外,我们还明确了在调整患者背景特征后,体重过轻而非超重或肥胖状态与严重不良事件的增加显著相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验