Suppr超能文献

使用热释电红外传感器进行人体运动检测与识别。

Human movement detection and identification using pyroelectric infrared sensors.

作者信息

Yun Jaeseok, Lee Sang-Shin

机构信息

Embedded Software Convergence Research Center, Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Seongnam 463070, Korea.

出版信息

Sensors (Basel). 2014 May 5;14(5):8057-81. doi: 10.3390/s140508057.

Abstract

Pyroelectric infrared (PIR) sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and identification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth), three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor) and three speed levels (slow, moderate, fast). We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and identifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and identifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules.

摘要

热释电红外(PIR)传感器被广泛用作存在触发装置,但PIR传感器的模拟输出还取决于其他几个方面,包括人体与PIR传感器的距离、运动方向和速度、身体形状和步态。在本文中,我们展示了一项使用一组PIR传感器进行人体运动检测和识别的实证研究。我们开发了一个数据采集模块,该模块有两对正交排列的PIR传感器和经过改良的菲涅耳透镜。我们在一条走廊里放置了三个基于PIR的模块来监测人员;一个模块安装在天花板上;两个模块安装在相对的墙壁上,彼此相对。我们在三种不同条件下收集了八名受试者行走时的数据集:两个方向(来回)、三个距离区间(靠近一个墙壁传感器、在中间、靠近另一个墙壁传感器)和三个速度级别(慢、中、快)。我们使用了两种类型的特征集:原始数据集和由幅度和峰值时间组成的简化特征集;以及从每个PIR传感器提取的通过持续时间。我们使用了包括基于实例学习和支持向量机在内的知名机器学习算法进行分类分析。我们的研究结果表明,使用从三个模块中的每个模块的单个PIR传感器捕获的原始数据集,我们在对运动方向和速度、距离区间进行分类以及识别受试者方面可以达到92%以上的准确率。使用从三个模块中的每个模块的两对PIR传感器提取的简化特征集,我们在对方向、速度和距离进行分类以及识别受试者方面也可以达到94%以上的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2737/4063065/2d59f64c3d7a/sensors-14-08057f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验