Suppr超能文献

输入噪声和输出节点随机性对 Wang 的 kWTA 的影响。

Effect of input noise and output node stochastic on Wang's kWTA.

出版信息

IEEE Trans Neural Netw Learn Syst. 2013 Sep;24(9):1472-8. doi: 10.1109/TNNLS.2013.2257182.

Abstract

Recently, an analog neural network model, namely Wang's kWTA, was proposed. In this model, the output nodes are defined as the Heaviside function. Subsequently, its finite time convergence property and the exact convergence time are analyzed. However, the discovered characteristics of this model are based on the assumption that there are no physical defects during the operation. In this brief, we analyze the convergence behavior of the Wang's kWTA model when defects exist during the operation. Two defect conditions are considered. The first one is that there is input noise. The second one is that there is stochastic behavior in the output nodes. The convergence of the Wang's kWTA under these two defects is analyzed and the corresponding energy function is revealed.

摘要

最近,提出了一种模拟神经网络模型,即 Wang 的 kWTA。在这个模型中,输出节点被定义为 Heaviside 函数。随后,分析了其有限时间收敛性质和精确收敛时间。然而,这个模型的发现特性是基于在操作过程中没有物理缺陷的假设。在本简讯中,我们分析了 Wang 的 kWTA 模型在操作过程中存在缺陷时的收敛行为。考虑了两种缺陷情况。第一种是存在输入噪声。第二种是输出节点存在随机行为。分析了 Wang 的 kWTA 在这两种缺陷下的收敛性,并揭示了相应的能量函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验