Suppr超能文献

用于跨多个类别的逆协方差估计的联合图形套索法。

The joint graphical lasso for inverse covariance estimation across multiple classes.

作者信息

Danaher Patrick, Wang Pei, Witten Daniela M

机构信息

Department of Biostatistics, University of Washington, USA.

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2014 Mar;76(2):373-397. doi: 10.1111/rssb.12033.

Abstract

We consider the problem of estimating multiple related Gaussian graphical models from a high-dimensional data set with observations belonging to distinct classes. We propose the , which borrows strength across the classes in order to estimate multiple graphical models that share certain characteristics, such as the locations or weights of nonzero edges. Our approach is based upon maximizing a penalized log likelihood. We employ generalized fused lasso or group lasso penalties, and implement a fast ADMM algorithm to solve the corresponding convex optimization problems. The performance of the proposed method is illustrated through simulated and real data examples.

摘要

我们考虑从一个高维数据集中估计多个相关高斯图形模型的问题,该数据集中的观测值属于不同的类别。我们提出了一种方法,该方法通过跨类别借鉴优势来估计多个具有某些共同特征(例如非零边的位置或权重)的图形模型。我们的方法基于最大化惩罚对数似然。我们采用广义融合套索或组套索惩罚,并实现一种快速交替方向乘子法(ADMM)算法来解决相应的凸优化问题。通过模拟和实际数据示例说明了所提方法的性能。

相似文献

1
The joint graphical lasso for inverse covariance estimation across multiple classes.
J R Stat Soc Series B Stat Methodol. 2014 Mar;76(2):373-397. doi: 10.1111/rssb.12033.
2
Structured Learning of Gaussian Graphical Models.
Adv Neural Inf Process Syst. 2012;2012:629-637.
3
Extended graphical lasso for multiple interaction networks for high dimensional omics data.
PLoS Comput Biol. 2021 Oct 20;17(10):e1008794. doi: 10.1371/journal.pcbi.1008794. eCollection 2021 Oct.
4
Learning Graphical Models With Hubs.
J Mach Learn Res. 2014 Oct;15:3297-3331.
5
Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks.
Front Genet. 2019 Jul 22;10:623. doi: 10.3389/fgene.2019.00623. eCollection 2019.
6
Node-Based Learning of Multiple Gaussian Graphical Models.
J Mach Learn Res. 2014 Jan 1;15(1):445-488.
7
The cluster graphical lasso for improved estimation of Gaussian graphical models.
Comput Stat Data Anal. 2015 May;85:23-36. doi: 10.1016/j.csda.2014.11.015.
8
Pathway Graphical Lasso.
Proc AAAI Conf Artif Intell. 2015 Jan;2015:2617-2623.
9
Joint Learning of Multiple Differential Networks With Latent Variables.
IEEE Trans Cybern. 2019 Sep;49(9):3494-3506. doi: 10.1109/TCYB.2018.2845838. Epub 2018 Jul 6.
10
Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models.
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2606-20. doi: 10.1109/TNNLS.2014.2384201. Epub 2015 Mar 4.

引用本文的文献

1
Fairness-Aware Estimation of Graphical Models.
Adv Neural Inf Process Syst. 2024;37:17870-17909.
2
Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates.
J Comput Graph Stat. 2024 Dec 20. doi: 10.1080/10618600.2024.2421246.
3
Double optimal transport for differential gene regulatory network inference with unpaired samples.
Bioinformatics. 2025 Aug 2;41(8). doi: 10.1093/bioinformatics/btaf352.
5
Multi-channel anomaly detection using graphical models.
J Intell Manuf. 2025;36(6):4319-4330. doi: 10.1007/s10845-024-02447-7. Epub 2024 Jul 13.
7
Algal origins of core land plant stress response subnetworks.
Plant J. 2025 Jun;122(6):e70291. doi: 10.1111/tpj.70291.
8
iDDN: determining trans-omics network structure and rewiring with integrative differential dependency networks.
Bioinform Adv. 2025 May 8;5(1):vbaf086. doi: 10.1093/bioadv/vbaf086. eCollection 2025.
9
A novel integration of brain structural and functional connectivity for identifying traumatic brain injury induced perturbations.
J Neurosci Methods. 2025 Jul;419:110459. doi: 10.1016/j.jneumeth.2025.110459. Epub 2025 Apr 22.
10
Neurometabolic network (NMetNet) for functional neurological disorder in children and adolescents.
Neuroimage Clin. 2025 Mar 12;46:103767. doi: 10.1016/j.nicl.2025.103767.

本文引用的文献

2
Structured Learning of Gaussian Graphical Models.
Adv Neural Inf Process Syst. 2012;2012:629-637.
4
Joint estimation of multiple graphical models.
Biometrika. 2011 Mar;98(1):1-15. doi: 10.1093/biomet/asq060. Epub 2011 Feb 9.
5
Covariance-regularized regression and classification for high-dimensional problems.
J R Stat Soc Series B Stat Methodol. 2009 Feb 20;71(3):615-636. doi: 10.1111/j.1467-9868.2009.00699.x.
6
Partial Correlation Estimation by Joint Sparse Regression Models.
J Am Stat Assoc. 2009 Jun 1;104(486):735-746. doi: 10.1198/jasa.2009.0126.
7
Recovering time-varying networks of dependencies in social and biological studies.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11878-83. doi: 10.1073/pnas.0901910106. Epub 2009 Jul 1.
8
KELLER: estimating time-varying interactions between genes.
Bioinformatics. 2009 Jun 15;25(12):i128-36. doi: 10.1093/bioinformatics/btp192.
9
K-ras as a target for lung cancer therapy.
J Thorac Oncol. 2008 Jun;3(6 Suppl 2):S160-3. doi: 10.1097/JTO.0b013e318174dbf9.
10
Sparse inverse covariance estimation with the graphical lasso.
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验