Suppr超能文献

一个适用于具有阿利效应和疾病修正适应度的野生种群的简单流行病学模型。

A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness.

作者信息

Kang Yun, Castillo-Chavez Carlos

机构信息

Applied Sciences and Mathematics, Arizona State University, Mesa, AZ 85212, USA.

Mathematical, Computational and Modeling Sciences Center Arizona State University, Tempe, 85287-1904 School of Human Evolution and Social Changes and School of Sustainability Santa Fe Institute, Santa Fe, NM, 87501 Cornell University, Biological Statistics and Computational Biology, Ithaca, NY 14853 - 2601

出版信息

Discrete Continuous Dyn Syst Ser B. 2014 Jan;19(1):89-130. doi: 10.3934/dcdsb.2014.19.89.

Abstract

The study of the dynamics of human infectious disease using deterministic models is typically carried out under the assumption that a critical mass of individuals is available and involved in the transmission process. However, in the study of animal disease dynamics where demographic considerations often play a significant role, this assumption must be weakened. Models of the dynamics of animal populations often naturally assume that the presence of a minimal number of individuals is essential to avoid extinction. In the ecological literature, this a priori requirement is commonly incorporated as an . The focus here is on the study disease dynamics under the assumption that a critical mass of susceptible individuals is required to guarantee the population's survival. Specifically, the emphasis is on the study of the role of an Allee effect on a Susceptible-Infectious (SI) model where the possibility that susceptible and infected individuals reproduce, with the S-class the best fit. It is further assumed that infected individuals loose some of their ability to compete for resources, the cost imposed by the disease. These features are set in motion in as model as possible. They turn out to lead to a rich set of dynamical outcomes. This model supports the possibility of multi-stability (hysteresis), saddle node and Hopf bifurcations, and catastrophic events (disease-induced extinction). The analyses provide a full picture of the system under disease-free dynamics including disease-induced extinction and proceed to identify required conditions for disease persistence. We conclude that increases in (i) the maximum birth rate of a species, or (ii) in the relative reproductive ability of infected individuals, or (iii) in the competitive ability of a infected individuals at low density levels, or in (iv) the per-capita death rate (including disease-induced) of infected individuals, can stabilize the system (resulting in disease persistence). We further conclude that increases in (a) the Allee effect threshold, or (b) in disease transmission rates, or in (c) the competitive ability of infected individuals at high density levels, can destabilize the system, possibly leading to the eventual collapse of the population. The results obtained from the analyses of this model highlight the significant role that factors like an Allee effect may play on the survival and persistence of animal populations. Scientists involved in biological conservation and pest management or interested in finding sustainability solutions, may find these results of this study compelling enough to suggest additional focused research on the role of disease in the regulation and persistence of animal populations. The risk faced by endangered species may turn out to be a lot higher than initially thought.

摘要

使用确定性模型对人类传染病动态进行的研究通常是在这样的假设下进行的,即有足够数量的个体参与传播过程。然而,在动物疾病动态研究中,人口统计学因素往往起着重要作用,这一假设必须弱化。动物种群动态模型通常自然地假设,存在最少数量的个体对于避免灭绝至关重要。在生态学文献中,这一先验要求通常作为一个……被纳入。这里的重点是在需要有临界数量的易感个体以保证种群生存的假设下研究疾病动态。具体而言,重点是研究阿利效应在易感 - 感染(SI)模型中的作用,其中易感个体和感染个体都有可能繁殖,且S类最符合情况。进一步假设感染个体失去了一些竞争资源的能力,这是疾病造成的代价。这些特征在尽可能简单的模型中展现出来。结果发现它们会导致一系列丰富的动态结果。这个模型支持多稳定性(滞后现象)、鞍结分岔和霍普夫分岔以及灾难性事件(疾病导致的灭绝)的可能性。分析提供了包括疾病导致灭绝在内的无病动态下系统的全貌,并进而确定疾病持续存在所需的条件。我们得出结论,(i)物种最大出生率的增加,或(ii)感染个体相对繁殖能力的增加,或(iii)低密度水平下感染个体竞争能力的增加,或(iv)感染个体的人均死亡率(包括疾病导致的)的增加,都可以使系统稳定(导致疾病持续存在)。我们还得出结论,(a)阿利效应阈值的增加,或(b)疾病传播率的增加,或(c)高密度水平下感染个体竞争能力的增加,可以使系统不稳定,可能导致种群最终崩溃。从这个模型分析中获得的结果突出了诸如阿利效应等因素可能对动物种群生存和持续存在所起的重要作用。参与生物保护和害虫管理的科学家或对寻找可持续性解决方案感兴趣的人,可能会发现这项研究的这些结果极具说服力,足以建议对疾病在动物种群调节和持续存在中的作用进行更多有针对性的研究。濒危物种面临的风险可能比最初想象的要高得多。

相似文献

1
A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness.
Discrete Continuous Dyn Syst Ser B. 2014 Jan;19(1):89-130. doi: 10.3934/dcdsb.2014.19.89.
2
Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects.
Math Biosci. 2014 Feb;248:97-116. doi: 10.1016/j.mbs.2013.12.006. Epub 2013 Dec 31.
3
4
Genetic Allee effects and their interaction with ecological Allee effects.
J Anim Ecol. 2018 Jan;87(1):11-23. doi: 10.1111/1365-2656.12598. Epub 2016 Nov 10.
7
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
8
Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model.
Math Biosci Eng. 2018 Aug 1;15(4):883-904. doi: 10.3934/mbe.2018040.
9
Simulating the dynamics of dispersal and dispersal ability in fragmented populations with mate-finding Allee effects.
Ecol Evol. 2023 Apr 21;13(4):e10021. doi: 10.1002/ece3.10021. eCollection 2023 Apr.
10
Fatal disease and demographic Allee effect: population persistence and extinction.
J Biol Dyn. 2012;6:495-508. doi: 10.1080/17513758.2011.630489. Epub 2011 Nov 2.

引用本文的文献

1
A real option analysis for stochastic disease control and vaccine stockpile policy: An application to H1N1 in Korea.
Econ Model. 2016 Feb;53:187-194. doi: 10.1016/j.econmod.2015.12.005. Epub 2015 Dec 29.
2
Think locally, act locally: detection of small, medium-sized, and large communities in large networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012821. doi: 10.1103/PhysRevE.91.012821. Epub 2015 Jan 26.
3
Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects.
Math Biosci. 2014 Feb;248:97-116. doi: 10.1016/j.mbs.2013.12.006. Epub 2013 Dec 31.
4
Multiscale analysis of compartment models with dispersal.
J Biol Dyn. 2012;6 Suppl 2(0 2):50-79. doi: 10.1080/17513758.2012.713125. Epub 2012 Aug 31.

本文引用的文献

1
Pathogen exposure in endangered island fox () populations: Implications for conservation management.
Biol Conserv. 2006 Aug;131(2):230-243. doi: 10.1016/j.biocon.2006.04.029. Epub 2006 Jun 10.
2
Population collapse to extinction: the catastrophic combination of parasitism and Allee effect.
J Biol Dyn. 2010 Jan;4(1):86-101. doi: 10.1080/17513750903026429.
3
Species decline and extinction: synergy of infectious disease and Allee effect?
J Biol Dyn. 2009 Mar;3(2-3):305-23. doi: 10.1080/17513750802376313.
4
Adaptive human behavior in epidemiological models.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6306-11. doi: 10.1073/pnas.1011250108. Epub 2011 Mar 28.
5
Dispersal effects on a discrete two-patch model for plant-insect interactions.
J Theor Biol. 2011 Jan 7;268(1):84-97. doi: 10.1016/j.jtbi.2010.09.033. Epub 2010 Oct 16.
6
Expansion or extinction: deterministic and stochastic two-patch models with Allee effects.
J Math Biol. 2011 Jun;62(6):925-73. doi: 10.1007/s00285-010-0359-3. Epub 2010 Aug 3.
7
Dynamical models of tuberculosis and their applications.
Math Biosci Eng. 2004 Sep;1(2):361-404. doi: 10.3934/mbe.2004.1.361.
8
A simple epidemic model with surprising dynamics.
Math Biosci Eng. 2005 Jan;2(1):133-52. doi: 10.3934/mbe.2005.2.133.
9
Raves, clubs and ecstasy: the impact of peer pressure.
Math Biosci Eng. 2006 Jan;3(1):249-66. doi: 10.3934/mbe.2006.3.249.
10
Dynamic phenomena arising from an extended Core Group model.
Math Biosci. 2009 Oct;221(2):136-49. doi: 10.1016/j.mbs.2009.08.003. Epub 2009 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验