1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China ; 3 UCSF/UC Berkeley Joint Group Program in Bioengineering, San Francisco & Berkeley, CA, USA ; 4 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA.
Quant Imaging Med Surg. 2014 Apr;4(2):106-11. doi: 10.3978/j.issn.2223-4292.2014.04.12.
Combination of parallel transmission and sparse pulse is able to shorten the excitation by using both the coil sensitivity and sparse k-space, showing improved fast excitation capability over the use of parallel transmission alone. However, to design an optimal k-space trajectory for sparse parallel transmission is a challenging task. In this work, a randomly perturbed sparse k-space trajectory is designed by modifying the path of a spiral trajectory along the sparse k-space data, and the sparse parallel transmission RF pulses are subsequently designed based on this optimal trajectory. This method combines the parallel transmission and sparse spiral k-space trajectory, potentially to further reduce the RF transmission time. Bloch simulation of 90° excitation by using a four channel coil array is performed to demonstrate its feasibility. Excitation performance of the sparse parallel transmission technique at different reduction factors of 1, 2, and 4 is evaluated. For comparison, parallel excitation using regular spiral trajectory is performed. The passband errors of the excitation profiles of each transmission are calculated for quantitative assessment of the proposed excitation method.
并行传输和稀疏脉冲的组合能够利用线圈灵敏度和稀疏 k 空间来缩短激励时间,相比于单独使用并行传输,展示出了更快的激发能力。然而,设计最优的稀疏并行传输 k 空间轨迹是一项具有挑战性的任务。在这项工作中,通过沿着稀疏 k 空间数据修改螺旋轨迹的路径,设计了一个随机扰动的稀疏 k 空间轨迹,随后基于这个最优轨迹设计稀疏并行传输射频脉冲。这种方法结合了并行传输和稀疏螺旋 k 空间轨迹,可能进一步减少射频传输时间。通过使用四通道线圈阵列进行 90°激励的 Bloch 模拟来证明其可行性。评估了不同降采样因子(1、2 和 4)下稀疏并行传输技术的激励性能。为了进行比较,使用常规螺旋轨迹进行了并行激励。计算了每个传输的激励轮廓的通带误差,以对所提出的激励方法进行定量评估。