Suppr超能文献

随机微扰螺旋 k 空间轨迹的稀疏并行传输。

Sparse parallel transmission on randomly perturbed spiral k-space trajectory.

机构信息

1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China ; 3 UCSF/UC Berkeley Joint Group Program in Bioengineering, San Francisco & Berkeley, CA, USA ; 4 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA.

出版信息

Quant Imaging Med Surg. 2014 Apr;4(2):106-11. doi: 10.3978/j.issn.2223-4292.2014.04.12.

Abstract

Combination of parallel transmission and sparse pulse is able to shorten the excitation by using both the coil sensitivity and sparse k-space, showing improved fast excitation capability over the use of parallel transmission alone. However, to design an optimal k-space trajectory for sparse parallel transmission is a challenging task. In this work, a randomly perturbed sparse k-space trajectory is designed by modifying the path of a spiral trajectory along the sparse k-space data, and the sparse parallel transmission RF pulses are subsequently designed based on this optimal trajectory. This method combines the parallel transmission and sparse spiral k-space trajectory, potentially to further reduce the RF transmission time. Bloch simulation of 90° excitation by using a four channel coil array is performed to demonstrate its feasibility. Excitation performance of the sparse parallel transmission technique at different reduction factors of 1, 2, and 4 is evaluated. For comparison, parallel excitation using regular spiral trajectory is performed. The passband errors of the excitation profiles of each transmission are calculated for quantitative assessment of the proposed excitation method.

摘要

并行传输和稀疏脉冲的组合能够利用线圈灵敏度和稀疏 k 空间来缩短激励时间,相比于单独使用并行传输,展示出了更快的激发能力。然而,设计最优的稀疏并行传输 k 空间轨迹是一项具有挑战性的任务。在这项工作中,通过沿着稀疏 k 空间数据修改螺旋轨迹的路径,设计了一个随机扰动的稀疏 k 空间轨迹,随后基于这个最优轨迹设计稀疏并行传输射频脉冲。这种方法结合了并行传输和稀疏螺旋 k 空间轨迹,可能进一步减少射频传输时间。通过使用四通道线圈阵列进行 90°激励的 Bloch 模拟来证明其可行性。评估了不同降采样因子(1、2 和 4)下稀疏并行传输技术的激励性能。为了进行比较,使用常规螺旋轨迹进行了并行激励。计算了每个传输的激励轮廓的通带误差,以对所提出的激励方法进行定量评估。

相似文献

1
Sparse parallel transmission on randomly perturbed spiral k-space trajectory.
Quant Imaging Med Surg. 2014 Apr;4(2):106-11. doi: 10.3978/j.issn.2223-4292.2014.04.12.
2
Squeezed Trajectory Design for Peak RF and Integrated RF Power Reduction in Parallel Transmission MRI.
IEEE Trans Med Imaging. 2018 Aug;37(8):1809-1821. doi: 10.1109/TMI.2018.2828112. Epub 2018 Apr 18.
3
B0-informed variable density trajectory design for enhanced correction of off-resonance effects in parallel transmission.
Magn Reson Med. 2014 Apr;71(4):1381-93. doi: 10.1002/mrm.24780. Epub 2013 May 28.
4
Precompensation for mutual coupling between array elements in parallel excitation.
Quant Imaging Med Surg. 2011 Dec;1(1):4-10. doi: 10.3978/j.issn.2223-4292.2011.11.02.
5
Shaped saturation with inherent radiofrequency-power-efficient trajectory design in parallel transmission.
Magn Reson Med. 2014 Oct;72(4):1015-27. doi: 10.1002/mrm.25016. Epub 2013 Nov 11.
7
Parallel magnetic resonance imaging.
Neurotherapeutics. 2007 Jul;4(3):499-510. doi: 10.1016/j.nurt.2007.04.011.
8
Advanced three-dimensional tailored RF pulse design in volume selective parallel excitation.
IEEE Trans Med Imaging. 2012 May;31(5):997-1007. doi: 10.1109/TMI.2011.2178035. Epub 2011 Dec 2.
9
Coil reduction in parallel excitation with large array.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3313-6. doi: 10.1109/IEMBS.2010.5627495.
10
Excitation of arbitrary shapes by gradient optimized random walk in discrete k-space.
Magn Reson Med. 1997 Jun;37(6):920-31. doi: 10.1002/mrm.1910370618.

引用本文的文献

本文引用的文献

1
7T transmit/receive arrays using ICE decoupling for human head MR imaging.
IEEE Trans Med Imaging. 2014 Sep;33(9):1781-7. doi: 10.1109/TMI.2014.2313879. Epub 2014 Apr 1.
3
Interpolated compressed sensing for 2D multiple slice fast MR imaging.
PLoS One. 2013;8(2):e56098. doi: 10.1371/journal.pone.0056098. Epub 2013 Feb 8.
4
Precompensation for mutual coupling between array elements in parallel excitation.
Quant Imaging Med Surg. 2011 Dec;1(1):4-10. doi: 10.3978/j.issn.2223-4292.2011.11.02.
6
Compressed sensing MRI using Singular Value Decomposition based sparsity basis.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5734-7. doi: 10.1109/IEMBS.2011.6091419.
7
Flexible transceiver array for ultrahigh field human MR imaging.
Magn Reson Med. 2012 Oct;68(4):1332-8. doi: 10.1002/mrm.24121. Epub 2012 Jan 13.
8
Compressed sensing sodium MRI of cartilage at 7T: preliminary study.
J Magn Reson. 2012 Jan;214(1):360-5. doi: 10.1016/j.jmr.2011.12.005. Epub 2011 Dec 13.
9
Fast cardiac T1 mapping in mice using a model-based compressed sensing method.
Magn Reson Med. 2012 Oct;68(4):1127-34. doi: 10.1002/mrm.23323. Epub 2011 Dec 9.
10
A k-space analysis of small-tip-angle excitation. 1989.
J Magn Reson. 2011 Dec;213(2):544-57. doi: 10.1016/j.jmr.2011.09.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验