Suppr超能文献

营养调控的 MrpC 蛋白水解作用阻止了 Myxococcus xanthus 发育过程中决定孢子形成的关键基因的表达。

Nutrient-regulated proteolysis of MrpC halts expression of genes important for commitment to sporulation during Myxococcus xanthus development.

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA

出版信息

J Bacteriol. 2014 Aug;196(15):2736-47. doi: 10.1128/JB.01692-14. Epub 2014 May 16.

Abstract

Starved Myxococcus xanthus cells glide to aggregation centers and form fruiting bodies in which rod-shaped cells differentiate into ovoid spores. Commitment to development was investigated by adding nutrients at specific times after starvation and determining whether development halted or proceeded. At 24 h poststarvation, some rod-shaped cells were committed to subsequent shape change and to becoming sonication-resistant spores, but nutrients caused partial disaggregation of fruiting bodies. By 30 h poststarvation, 10-fold more cells were committed to becoming sonication-resistant spores, and compact fruiting bodies persisted after nutrient addition. During the critical period of commitment around 24 to 30 h poststarvation, the transcription factors MrpC and FruA cooperatively regulate genes important for sporulation. FruA responds to short-range C-signaling, which increases as cells form fruiting bodies. MrpC was found to be highly sensitive to nutrient-regulated proteolysis both before and during the critical period of commitment to sporulation. The rapid turnover of MrpC upon nutrient addition to developing cells halted expression of the dev operon, which is important for sporulation. Regulated proteolysis of MrpC appeared to involve ATP-independent metalloprotease activity and may provide a mechanism for monitoring whether starvation persists and halting commitment to sporulation if nutrients reappear.

摘要

饥饿状态下的粘球菌细胞会滑行到聚集中心,并形成子实体,在子实体中,杆状细胞分化成卵形孢子。通过在饥饿后特定时间添加营养物质,并确定发育是否停止或继续,来研究细胞对发育的承诺。饥饿后 24 小时,一些杆状细胞就开始进行后续的形状变化,并成为抗超声处理的孢子,但营养物质会导致子实体部分解体。饥饿后 30 小时,有 10 倍以上的细胞开始成为抗超声处理的孢子,并且在添加营养物质后,紧凑的子实体仍然存在。在饥饿后 24 到 30 小时的关键承诺期,转录因子 MrpC 和 FruA 共同调控对孢子形成很重要的基因。 FruA 对短程 C 信号作出反应,随着细胞形成子实体,C 信号会增加。发现 MrpC 在饥饿前和承诺期对孢子形成的高度敏感,其对营养调节的蛋白水解作用非常敏感。当发育细胞添加营养物质时,MrpC 的快速周转会停止表达 dev 操纵子,该操纵子对孢子形成很重要。MrpC 的调控蛋白水解似乎涉及 ATP 非依赖性金属蛋白酶活性,并且可能为监测是否持续饥饿以及如果营养物质再次出现而停止对孢子形成的承诺提供一种机制。

相似文献

5
The Operon Regulates the Timing of Sporulation during Myxococcus xanthus Development.
J Bacteriol. 2017 Apr 25;199(10). doi: 10.1128/JB.00788-16. Print 2017 May 15.
7
Combinatorial regulation of the dev operon by MrpC2 and FruA during Myxococcus xanthus development.
J Bacteriol. 2015 Jan;197(2):240-51. doi: 10.1128/JB.02310-14. Epub 2014 Oct 27.
8
Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8782-7. doi: 10.1073/pnas.1533026100. Epub 2003 Jul 8.
9
Dual regulation with Ser/Thr kinase cascade and a His/Asp TCS in Myxococcus xanthus.
Adv Exp Med Biol. 2008;631:111-21. doi: 10.1007/978-0-387-78885-2_7.
10
Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus.
J Bacteriol. 2001 Aug;183(16):4786-95. doi: 10.1128/JB.183.16.4786-4795.2001.

引用本文的文献

2
Mutation of self-binding sites in the promoter of the MrpC transcriptional regulator leads to asynchronous development.
Front Microbiol. 2023 Nov 23;14:1293966. doi: 10.3389/fmicb.2023.1293966. eCollection 2023.
3
Alternative functions of CRISPR-Cas systems in the evolutionary arms race.
Nat Rev Microbiol. 2022 Jun;20(6):351-364. doi: 10.1038/s41579-021-00663-z. Epub 2022 Jan 6.
4
Cell density, alignment, and orientation correlate with C-signal-dependent gene expression during development.
Proc Natl Acad Sci U S A. 2021 Nov 9;118(45). doi: 10.1073/pnas.2111706118.
6
The Operon Regulates the Timing of Sporulation during Myxococcus xanthus Development.
J Bacteriol. 2017 Apr 25;199(10). doi: 10.1128/JB.00788-16. Print 2017 May 15.
7
Highly Signal-Responsive Gene Regulatory Network Governing Myxococcus Development.
Trends Genet. 2017 Jan;33(1):3-15. doi: 10.1016/j.tig.2016.10.006. Epub 2016 Dec 2.
8
devI is an evolutionarily young negative regulator of Myxococcus xanthus development.
J Bacteriol. 2015 Apr;197(7):1249-62. doi: 10.1128/JB.02542-14. Epub 2015 Feb 2.
10
Combinatorial regulation of the dev operon by MrpC2 and FruA during Myxococcus xanthus development.
J Bacteriol. 2015 Jan;197(2):240-51. doi: 10.1128/JB.02310-14. Epub 2014 Oct 27.

本文引用的文献

1
Regulated proteolysis in bacterial development.
FEMS Microbiol Rev. 2014 May;38(3):493-522. doi: 10.1111/1574-6976.12050. Epub 2013 Dec 19.
2
Two intercellular signals required for fruiting body formation in Myxococcus xanthus act sequentially but non-hierarchically.
Mol Microbiol. 2012 Oct;86(1):65-81. doi: 10.1111/j.1365-2958.2012.08173.x. Epub 2012 Jul 27.
3
Intra- and interprotein phosphorylation between two-hybrid histidine kinases controls Myxococcus xanthus developmental progression.
J Biol Chem. 2012 Jul 20;287(30):25060-72. doi: 10.1074/jbc.M112.387241. Epub 2012 Jun 1.
6
Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition.
Mol Microbiol. 2012 Feb;83(3):486-505. doi: 10.1111/j.1365-2958.2011.07944.x. Epub 2011 Dec 21.
7
Reversible and noisy progression towards a commitment point enables adaptable and reliable cellular decision-making.
PLoS Comput Biol. 2011 Nov;7(11):e1002273. doi: 10.1371/journal.pcbi.1002273. Epub 2011 Nov 10.
8
Non-transcriptional regulatory processes shape transcriptional network dynamics.
Nat Rev Microbiol. 2011 Oct 11;9(11):817-28. doi: 10.1038/nrmicro2667.
10
Combinatorial regulation of fmgD by MrpC2 and FruA during Myxococcus xanthus development.
J Bacteriol. 2011 Apr;193(7):1681-9. doi: 10.1128/JB.01541-10. Epub 2011 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验