Suppr超能文献

划分人类跑步的代谢成本:一种逐任务的方法。

Partitioning the metabolic cost of human running: a task-by-task approach.

作者信息

Arellano Christopher J, Kram Rodger

机构信息

*Ecology and Evolutionary Biology Department, Brown University, Box G-W, 80 Waterman Street, Providence, RI 02912, USA; Integrative Physiology Department, University of Colorado, Boulder, CO, USA

*Ecology and Evolutionary Biology Department, Brown University, Box G-W, 80 Waterman Street, Providence, RI 02912, USA; Integrative Physiology Department, University of Colorado, Boulder, CO, USA.

出版信息

Integr Comp Biol. 2014 Dec;54(6):1084-98. doi: 10.1093/icb/icu033. Epub 2014 May 16.

Abstract

Compared with other species, humans can be very tractable and thus an ideal "model system" for investigating the metabolic cost of locomotion. Here, we review the biomechanical basis for the metabolic cost of running. Running has been historically modeled as a simple spring-mass system whereby the leg acts as a linear spring, storing, and returning elastic potential energy during stance. However, if running can be modeled as a simple spring-mass system with the underlying assumption of perfect elastic energy storage and return, why does running incur a metabolic cost at all? In 1980, Taylor et al. proposed the "cost of generating force" hypothesis, which was based on the idea that elastic structures allow the muscles to transform metabolic energy into force, and not necessarily mechanical work. In 1990, Kram and Taylor then provided a more explicit and quantitative explanation by demonstrating that the rate of metabolic energy consumption is proportional to body weight and inversely proportional to the time of foot-ground contact for a variety of animals ranging in size and running speed. With a focus on humans, Kram and his colleagues then adopted a task-by-task approach and initially found that the metabolic cost of running could be "individually" partitioned into body weight support (74%), propulsion (37%), and leg-swing (20%). Summing all these biomechanical tasks leads to a paradoxical overestimation of 131%. To further elucidate the possible interactions between these tasks, later studies quantified the reductions in metabolic cost in response to synergistic combinations of body weight support, aiding horizontal forces, and leg-swing-assist forces. This synergistic approach revealed that the interactive nature of body weight support and forward propulsion comprises ∼80% of the net metabolic cost of running. The task of leg-swing at most comprises ∼7% of the net metabolic cost of running and is independent of body weight support and forward propulsion. In our recent experiments, we have continued to refine this task-by-task approach, demonstrating that maintaining lateral balance comprises only 2% of the net metabolic cost of running. In contrast, arm-swing reduces the cost by ∼3%, indicating a net metabolic benefit. Thus, by considering the synergistic nature of body weight support and forward propulsion, as well as the tasks of leg-swing and lateral balance, we can account for 89% of the net metabolic cost of human running.

摘要

与其他物种相比,人类非常容易控制,因此是研究运动代谢成本的理想“模型系统”。在此,我们回顾跑步代谢成本的生物力学基础。从历史上看,跑步被建模为一个简单的弹簧 - 质量系统,在这个系统中,腿部充当线性弹簧,在站立阶段储存并返还弹性势能。然而,如果跑步可以被建模为一个具有完美弹性能量储存和返还这一潜在假设的简单弹簧 - 质量系统,那为什么跑步还会产生代谢成本呢?1980年,泰勒等人提出了“产生力的成本”假说,该假说基于这样一种观点,即弹性结构使肌肉能够将代谢能量转化为力,而不一定是机械功。1990年,克拉姆和泰勒通过证明对于各种大小和跑步速度不同的动物,代谢能量消耗率与体重成正比,与脚与地面接触时间成反比,给出了更明确和定量的解释。以人类为重点,克拉姆和他的同事随后采用逐个任务的方法,最初发现跑步的代谢成本可以“分别”分为体重支撑(74%)、推进(37%)和腿部摆动(20%)。将所有这些生物力学任务相加会导致一个矛盾的结果,即高估了131%。为了进一步阐明这些任务之间可能的相互作用,后来的研究量化了因体重支撑、辅助水平力和腿部摆动辅助力的协同组合而导致的代谢成本降低。这种协同方法表明,体重支撑和向前推进的相互作用性质约占跑步净代谢成本的80%。腿部摆动任务最多约占跑步净代谢成本的7%,并且与体重支撑和向前推进无关。在我们最近的实验中,我们继续完善这种逐个任务的方法,并证明维持横向平衡仅占跑步净代谢成本的2%。相比之下,摆臂可使成本降低约3%,这表明有净代谢益处。因此,通过考虑体重支撑和向前推进的协同性质,以及腿部摆动和横向平衡任务,我们可以解释人类跑步净代谢成本的89%。

相似文献

1
Partitioning the metabolic cost of human running: a task-by-task approach.
Integr Comp Biol. 2014 Dec;54(6):1084-98. doi: 10.1093/icb/icu033. Epub 2014 May 16.
2
Metabolic energy and muscular activity required for leg swing in running.
J Appl Physiol (1985). 2005 Jun;98(6):2126-31. doi: 10.1152/japplphysiol.00511.2004.
3
How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier.
Sports Med. 2017 Sep;47(9):1739-1750. doi: 10.1007/s40279-017-0708-0.
6
The application of ground force explains the energetic cost of running backward and forward.
J Exp Biol. 2001 May;204(Pt 10):1805-15. doi: 10.1242/jeb.204.10.1805.
7
Effects of independently altering body weight and mass on the energetic cost of a human running model.
J Biomech. 2016 Mar 21;49(5):691-697. doi: 10.1016/j.jbiomech.2016.01.016. Epub 2016 Mar 2.
8
Energy cost and muscular activity required for leg swing during walking.
J Appl Physiol (1985). 2005 Jul;99(1):23-30. doi: 10.1152/japplphysiol.01190.2004.
9
Effects of independently altering body weight and body mass on the metabolic cost of running.
J Exp Biol. 2007 Dec;210(Pt 24):4418-27. doi: 10.1242/jeb.004481.
10
Metabolic cost of generating horizontal forces during human running.
J Appl Physiol (1985). 1999 May;86(5):1657-62. doi: 10.1152/jappl.1999.86.5.1657.

引用本文的文献

1
Behavioural energetics in human locomotion: how energy use influences how we move.
J Exp Biol. 2025 Feb 15;228(Suppl_1). doi: 10.1242/jeb.248125. Epub 2025 Feb 20.
2
The effect of forward postural lean on running economy, kinematics, and muscle activation.
PLoS One. 2024 May 29;19(5):e0302249. doi: 10.1371/journal.pone.0302249. eCollection 2024.
3
The Relationship Between Running Biomechanics and Running Economy: A Systematic Review and Meta-Analysis of Observational Studies.
Sports Med. 2024 May;54(5):1269-1316. doi: 10.1007/s40279-024-01997-3. Epub 2024 Mar 6.
4
Effect of cross-slope angle on running economy and gait characteristics at moderate running velocity.
Eur J Appl Physiol. 2024 Apr;124(4):1259-1266. doi: 10.1007/s00421-023-05358-2. Epub 2023 Nov 22.
5
Simulating Muscle-Level Energetic Cost Savings When Humans Run with a Passive Assistive Device.
IEEE Robot Autom Lett. 2023 Oct;8(10):6267-6274. doi: 10.1109/lra.2023.3303094. Epub 2023 Aug 7.
6
Estimation of horizontal running power using foot-worn inertial measurement units.
Front Bioeng Biotechnol. 2023 Jun 22;11:1167816. doi: 10.3389/fbioe.2023.1167816. eCollection 2023.
8
Effects of simulated reduced gravity and walking speed on ankle, knee, and hip quasi-stiffness in overground walking.
PLoS One. 2022 Aug 9;17(8):e0271927. doi: 10.1371/journal.pone.0271927. eCollection 2022.
9
Mechanical work accounts for most of the energetic cost in human running.
Sci Rep. 2022 Jan 12;12(1):645. doi: 10.1038/s41598-021-04215-6.
10
Metabolic cost of level, uphill, and downhill running in highly cushioned shoes with carbon-fiber plates.
J Sport Health Sci. 2022 May;11(3):303-308. doi: 10.1016/j.jshs.2021.10.004. Epub 2021 Nov 3.

本文引用的文献

1
The metabolic cost of human running: is swinging the arms worth it?
J Exp Biol. 2014 Jul 15;217(Pt 14):2456-61. doi: 10.1242/jeb.100420.
2
How tendons buffer energy dissipation by muscle.
Exerc Sport Sci Rev. 2013 Oct;41(4):186-93. doi: 10.1097/JES.0b013e3182a4e6d5.
3
The energetic cost of maintaining lateral balance during human running.
J Appl Physiol (1985). 2012 Feb;112(3):427-34. doi: 10.1152/japplphysiol.00554.2011. Epub 2011 Nov 3.
4
Muscle power attenuation by tendon during energy dissipation.
Proc Biol Sci. 2012 Mar 22;279(1731):1108-13. doi: 10.1098/rspb.2011.1435. Epub 2011 Sep 28.
5
The effects of step width and arm swing on energetic cost and lateral balance during running.
J Biomech. 2011 Apr 29;44(7):1291-5. doi: 10.1016/j.jbiomech.2011.01.002. Epub 2011 Feb 12.
6
Flexible mechanisms: the diverse roles of biological springs in vertebrate movement.
J Exp Biol. 2011 Feb 1;214(Pt 3):353-61. doi: 10.1242/jeb.038588.
7
Understanding muscle energetics in locomotion: new modeling and experimental approaches.
Exerc Sport Sci Rev. 2011 Apr;39(2):59-67. doi: 10.1097/JES.0b013e31820d7bc5.
8
Muscle use during double poling evaluated by positron emission tomography.
J Appl Physiol (1985). 2010 Dec;109(6):1895-903. doi: 10.1152/japplphysiol.00671.2010. Epub 2010 Oct 14.
9
Optimal running speed and the evolution of hominin hunting strategies.
J Hum Evol. 2009 Apr;56(4):355-60. doi: 10.1016/j.jhevol.2008.11.002. Epub 2009 Mar 18.
10
Effects of independently altering body weight and body mass on the metabolic cost of running.
J Exp Biol. 2007 Dec;210(Pt 24):4418-27. doi: 10.1242/jeb.004481.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验