Suppr超能文献

用于表面增强拉曼光谱的等离子体“纳米波”基底:制备与数值分析

Plasmonic "Nanowave" Substrates for SERS: Fabrication and Numerical Analysis.

作者信息

Khoury Christopher G, Vo-Dinh Tuan

机构信息

Fitzpatrick Institute of Photonics, Duke University, Durham, Department of BME, Duke University, Durham, and Department of Chemistry, Duke University, Durham, NC 27708.

出版信息

J Phys Chem C Nanomater Interfaces. 2012 Apr 5;116(13):7534-7545. doi: 10.1021/jp2120669.

Abstract

The "Nanowave" substrate, comprising a close-packed array of nanospheres onto which a thin metal shell of silver or gold is deposited, was first fabricated in our laboratory in 1984 and used as a surface-enhanced Raman scattering (SERS)-active substrate for the sensitive and reproducible detection of analytes. More than twenty-five years after the first experimental demonstration of the effectiveness of this substrate, numerical simulations are sufficiently powerful and versatile to mimic this geometry in three dimensional space and confirm the experimentally measured plasmonic behavior at the substrate's surface. The study confirms that an in-plane polarized incident plane wave generates strong enhancements in the interstitial spaces between individual metal-coated nanospheres, thus producing closely packed arrays of hot spots underlining the strong SERS effect of the Nanowave substrate structures. The surface-averaged SERS enhancement exhibited by the Nanowaves was evaluated and compared for different metal thicknesses. The effect of structural confinement on the plasmonic behavior of the Nanowave structure was investigated by varying the structural confinement of the substrate in the plane parallel to the incident excitation. The Nanowave is an inexpensive, reproducible and effective plasmonics-active substrate that has the potential to be used for SERS studies requiring high detection sensitivity.

摘要

“纳米波”基底由紧密排列的纳米球阵列组成,上面沉积有一层银或金的薄金属壳,于1984年在我们实验室首次制造,并用作表面增强拉曼散射(SERS)活性基底,用于灵敏且可重复地检测分析物。在首次通过实验证明该基底有效性二十五年多后,数值模拟已足够强大且通用,能够在三维空间中模拟这种几何结构,并证实了在基底表面实验测量的等离子体行为。该研究证实,面内偏振的入射平面波在单个金属包覆纳米球之间的间隙中产生强烈增强,从而产生紧密排列的热点阵列,突出了纳米波基底结构的强SERS效应。评估并比较了不同金属厚度下纳米波表现出的表面平均SERS增强。通过改变基底在与入射激发平行平面内的结构限制,研究了结构限制对纳米波结构等离子体行为的影响。纳米波是一种廉价、可重复且有效的等离子体活性基底,有潜力用于需要高检测灵敏度的SERS研究。

相似文献

1
Plasmonic "Nanowave" Substrates for SERS: Fabrication and Numerical Analysis.
J Phys Chem C Nanomater Interfaces. 2012 Apr 5;116(13):7534-7545. doi: 10.1021/jp2120669.
2
Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
Chem Asian J. 2021 Jul 5;16(13):1807-1819. doi: 10.1002/asia.202100386. Epub 2021 Jun 8.
4
Universal Fabrication of Highly Efficient Plasmonic Thin-Films for Label-Free SERS Detection.
Small. 2021 Aug;17(33):e2100755. doi: 10.1002/smll.202100755. Epub 2021 Jul 21.
5
Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates.
Small. 2014 Aug 13;10(15):3065-71. doi: 10.1002/smll.201400438. Epub 2014 May 2.
10
Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array.
Sensors (Basel). 2019 Sep 14;19(18):3966. doi: 10.3390/s19183966.

引用本文的文献

1
Nanoplasmonics biosensors: At the frontiers of biomedical diagnostics.
Trends Analyt Chem. 2024 Nov;180. doi: 10.1016/j.trac.2024.117973. Epub 2024 Sep 18.
2
Present and Future of Surface-Enhanced Raman Scattering.
ACS Nano. 2020 Jan 28;14(1):28-117. doi: 10.1021/acsnano.9b04224. Epub 2019 Oct 8.
3
Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy.
Nanoscale. 2013 Nov 7;5(21):10127-40. doi: 10.1039/c3nr03633b. Epub 2013 Sep 20.
4
Label-free DNA biosensor based on SERS Molecular Sentinel on Nanowave chip.
Anal Chem. 2013 Jul 2;85(13):6378-83. doi: 10.1021/ac400763c. Epub 2013 Jun 12.
5
Microfabrication and optical properties of highly ordered silver nanostructures.
Nanoscale Res Lett. 2012 Jun 6;7(1):292. doi: 10.1186/1556-276X-7-292.

本文引用的文献

1
Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method.
Nanotechnology. 2010 Aug 6;21(31):315203. doi: 10.1088/0957-4484/21/31/315203. Epub 2010 Jul 15.
2
Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method.
ACS Nano. 2009 Sep 22;3(9):2776-88. doi: 10.1021/nn900664j.
5
Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling.
J Opt Soc Am A Opt Image Sci Vis. 2008 Jul;25(7):1783-9. doi: 10.1364/josaa.25.001783.
6
Measurement of the distribution of site enhancements in surface-enhanced Raman scattering.
Science. 2008 Jul 18;321(5887):388-92. doi: 10.1126/science.1159499. Epub 2008 Jun 26.
7
Finite-difference time-domain studies of the optical properties of nanoshell dimers.
J Phys Chem B. 2005 May 26;109(20):10042-51. doi: 10.1021/jp044382x.
8
Collective Theory for Surface Enhanced Raman Scattering.
Phys Rev Lett. 1996 Aug 5;77(6):1163-1166. doi: 10.1103/PhysRevLett.77.1163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验