Institute of Semiconductor and Solid State Physics, Johannes Kepler University , Altenbergerstr. 69, A-4040 Linz, Austria.
Nano Lett. 2014 Jun 11;14(6):3439-44. doi: 10.1021/nl500968k. Epub 2014 May 29.
Entanglement resources are key ingredients of future quantum technologies. If they could be efficiently integrated into a semiconductor platform, a new generation of devices could be envisioned, whose quantum-mechanical functionalities are controlled via the mature semiconductor technology. Epitaxial quantum dots (QDs) embedded in diodes would embody such ideal quantum devices, but a fine-structure splitting (FSS) between the bright exciton states lowers dramatically the degree of entanglement of the sources and hampers severely their real exploitation in the foreseen applications. In this work, we overcome this hurdle using strain-tunable optoelectronic devices, where any QD can be tuned for the emission of photon pairs featuring the highest degree of entanglement ever reported for QDs, with concurrence as high as 0.75 ± 0.02. Furthermore, we study the evolution of Bell's parameters as a function of FSS and demonstrate for the first time that filtering-free violation of Bell's inequalities requires the FSS to be smaller than 1 μeV. This upper limit for the FSS also sets the tuning range of exciton energies (∼1 meV) over which our device operates as an energy-tunable source of highly entangled photons. A moderate temporal filtering further increases the concurrence and the tunability of exciton energies up to 0.82 and 2 meV, respectively, though at the expense of 60% reduction of count rate.
纠缠资源是未来量子技术的关键要素。如果能将它们有效地集成到半导体平台中,就可以设想出新一代的设备,其量子机械功能可以通过成熟的半导体技术来控制。嵌入在二极管中的外延量子点(QD)将体现出这种理想的量子设备,但由于明亮激子态之间的精细结构分裂(FSS),源的纠缠程度大大降低,并严重阻碍了它们在预期应用中的实际利用。在这项工作中,我们使用应变可调谐光电设备克服了这一障碍,在该设备中,任何 QD 都可以调谐为发射具有最高纠缠度的光子对,其纠缠度高达 0.75±0.02。此外,我们研究了贝尔参数随 FSS 的演化,并首次证明无滤波违反贝尔不等式要求 FSS 小于 1μeV。FSS 的这个上限还设定了我们的设备作为高纠缠光子的能量可调谐源的激子能量调谐范围(约 1meV)。适度的时间滤波进一步将纠缠度和激子能量的可调谐性分别提高到 0.82 和 2meV,尽管代价是计数率降低 60%。