Department of Psychological and Brain Sciences, Johns Hopkins University Baltimore, MD, USA ; Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health Baltimore, MD, USA.
Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health Baltimore, MD, USA.
Front Neurosci. 2014 May 8;8:104. doi: 10.3389/fnins.2014.00104. eCollection 2014.
Inhibiting actions inappropriate for the behavioral context, or inhibitory control, is essential for survival and involves both reactively stopping the current prepared action and proactively adjusting behavioral tendencies to increase future performance. A powerful paradigm widely used in basic and clinical research to study inhibitory control is the stop signal task (SST). Recent years have seen a surging interest in translating the SST to rodents to study the neural mechanisms underlying inhibitory control. However, significant differences in task designs and behavioral strategies between rodent and primate studies have made it difficult to directly compare the two literatures. In this study, we developed a rodent-appropriate SST and characterized both reactive and proactive control in rats. For reactive inhibitory control, we found that, unlike in primates, incorrect stop trials in rodents result from two independent types of errors: an initial failure-to-stop error or, after successful stopping, a subsequent failure-to-wait error. Conflating failure-to-stop and failure-to-wait errors systematically overestimates the covert latency of reactive inhibition, the stop signal reaction time (SSRT). To correctly estimate SSRT, we developed and validated a new method that provides an unbiased SSRT estimate independent of the ability to wait. For proactive inhibitory control, we found that rodents adjust both their reaction time and the ability to stop following failure-to-wait errors and successful stop trials, but not after failure-to-stop errors. Together, these results establish a valid rodent model that utilizes proactive and reactive inhibitory control strategies similar to primates, and highlight the importance of dissociating initial stopping from subsequent waiting in studying mechanisms of inhibitory control using rodents.
抑制不适当的行为情境的反应,或抑制控制,是生存所必需的,它既包括被动地停止当前准备好的行为,也包括主动调整行为倾向以提高未来的表现。停止信号任务(SST)是一种广泛应用于基础和临床研究的有力范式,用于研究抑制控制。近年来,人们对将 SST 转化为啮齿动物以研究抑制控制的神经机制产生了浓厚的兴趣。然而,啮齿动物和灵长类动物研究在任务设计和行为策略方面存在显著差异,使得难以直接比较这两种文献。在这项研究中,我们开发了一种适合啮齿动物的 SST,并描述了大鼠的反应性和主动性控制。对于反应性抑制控制,我们发现,与灵长类动物不同,啮齿动物的错误停止试验是由两种独立的错误类型引起的:初始停止失败或成功停止后,随后的等待失败。将停止失败和等待失败错误混为一谈会系统地高估反应性抑制的潜在潜伏期,即停止信号反应时间(SSRT)。为了正确估计 SSRT,我们开发并验证了一种新方法,该方法提供了一种独立于等待能力的无偏 SSRT 估计。对于主动性抑制控制,我们发现啮齿动物会根据等待失败和成功停止试验后的反应时间和停止能力进行调整,但不会根据停止失败后的反应时间和停止能力进行调整。这些结果共同建立了一个有效的啮齿动物模型,该模型利用了类似于灵长类动物的主动和反应性抑制控制策略,并强调了在使用啮齿动物研究抑制控制机制时,将初始停止与后续等待分开的重要性。