Wayment-Steele Hannah K, Johnson Lewis E, Tian Fangyuan, Dixon Matthew C, Benz Lauren, Johal Malkiat S
Department of Chemistry, Pomona College , 645 North College Ave, Claremont, California 91711, United States.
ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9093-9. doi: 10.1021/am500920w. Epub 2014 Jun 5.
Understanding the kinetics of dye adsorption and desorption on semiconductors is crucial for optimizing the performance of dye-sensitized solar cells (DSSCs). Quartz crystal microbalance with dissipation monitoring (QCM-D) measures adsorbed mass in real time, allowing determination of binding kinetics. In this work, we characterize adsorption of the common RuBipy dye N3 to the native oxide layer of a planar, sputter-coated titanium surface, simulating the TiO2 substrate of a DSSC. We report adsorption equilibrium constants consistent with prior optical measurements of N3 adsorption. Dye binding and surface integrity were also verified by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS). We further study desorption of the dye from the native oxide layer on the QCM sensors using tetrabutylammonium hydroxide (TBAOH), a commonly used industrial desorbant. We find that using TBAOH as a desorbant does not fully regenerate the surface, though little ruthenium or nitrogen is observed by XPS after desorption, suggesting that carboxyl moieties of N3 remain bound. We demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption and desorption and begin to investigate the mechanism of dye desorption in DSSCs, a system that requires further study.
了解染料在半导体上的吸附和解吸动力学对于优化染料敏化太阳能电池(DSSC)的性能至关重要。带有耗散监测的石英晶体微天平(QCM-D)可实时测量吸附质量,从而确定结合动力学。在这项工作中,我们表征了常见的钌联吡啶染料N3在平面溅射涂层钛表面的原生氧化层上的吸附情况,模拟了DSSC的TiO2基底。我们报告的吸附平衡常数与先前对N3吸附的光学测量结果一致。还通过扫描电子显微镜、能量色散X射线光谱和X射线光电子能谱(XPS)验证了染料结合和表面完整性。我们进一步使用常用的工业解吸剂氢氧化四丁基铵(TBAOH)研究了染料从QCM传感器上的原生氧化层的解吸情况。我们发现,使用TBAOH作为解吸剂不能使表面完全再生,尽管解吸后XPS几乎未观察到钌或氮,这表明N3的羧基部分仍然结合。我们证明了钛传感器的原生氧化层是一种有效且易于获得的平面TiO2形态,可用于研究染料吸附和解吸,并开始研究DSSC中染料解吸的机制,这是一个需要进一步研究的系统。