Masui Kenta, Cavenee Webster K, Mischel Paul S
Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.
Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA.
Trends Endocrinol Metab. 2014 Jul;25(7):364-73. doi: 10.1016/j.tem.2014.04.002. Epub 2014 May 21.
Metabolic reprogramming is a central hallmark of cancer, enabling tumor cells to obtain the macromolecular precursors and energy needed for rapid tumor growth. Understanding how oncogenes coordinate altered signaling with metabolic reprogramming and global transcription may yield new insights into tumor pathogenesis, and provide a new landscape of promising drug targets, while yielding important clues into mechanisms of resistance to the signal transduction inhibitors currently in use. We review here the recently identified central regulatory role for mechanistic target of rapamycin complex 2 (mTORC2), a downstream effector of many cancer-causing mutations, in metabolic reprogramming and cancer drug resistance. We consider the impact of mTORC2-related metabolism on epigenetics and therapeutics, with a particular focus on the intractable malignant brain tumor, glioblastoma multiforme (GBM).
代谢重编程是癌症的一个核心特征,使肿瘤细胞能够获得快速肿瘤生长所需的大分子前体和能量。了解癌基因如何协调改变的信号传导与代谢重编程及全局转录,可能会为肿瘤发病机制带来新见解,并提供有前景的药物靶点新领域,同时为目前使用的信号转导抑制剂的耐药机制提供重要线索。我们在此回顾了雷帕霉素复合物2(mTORC2)的机制靶点最近在代谢重编程和癌症耐药性中所确定的核心调节作用,mTORC2是许多致癌突变的下游效应器。我们考虑了mTORC2相关代谢对表观遗传学和治疗学的影响,特别关注难治性恶性脑肿瘤——多形性胶质母细胞瘤(GBM)。