Suppr超能文献

mTORC2处于癌症代谢重编程的核心位置。

mTORC2 in the center of cancer metabolic reprogramming.

作者信息

Masui Kenta, Cavenee Webster K, Mischel Paul S

机构信息

Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.

Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA.

出版信息

Trends Endocrinol Metab. 2014 Jul;25(7):364-73. doi: 10.1016/j.tem.2014.04.002. Epub 2014 May 21.

Abstract

Metabolic reprogramming is a central hallmark of cancer, enabling tumor cells to obtain the macromolecular precursors and energy needed for rapid tumor growth. Understanding how oncogenes coordinate altered signaling with metabolic reprogramming and global transcription may yield new insights into tumor pathogenesis, and provide a new landscape of promising drug targets, while yielding important clues into mechanisms of resistance to the signal transduction inhibitors currently in use. We review here the recently identified central regulatory role for mechanistic target of rapamycin complex 2 (mTORC2), a downstream effector of many cancer-causing mutations, in metabolic reprogramming and cancer drug resistance. We consider the impact of mTORC2-related metabolism on epigenetics and therapeutics, with a particular focus on the intractable malignant brain tumor, glioblastoma multiforme (GBM).

摘要

代谢重编程是癌症的一个核心特征,使肿瘤细胞能够获得快速肿瘤生长所需的大分子前体和能量。了解癌基因如何协调改变的信号传导与代谢重编程及全局转录,可能会为肿瘤发病机制带来新见解,并提供有前景的药物靶点新领域,同时为目前使用的信号转导抑制剂的耐药机制提供重要线索。我们在此回顾了雷帕霉素复合物2(mTORC2)的机制靶点最近在代谢重编程和癌症耐药性中所确定的核心调节作用,mTORC2是许多致癌突变的下游效应器。我们考虑了mTORC2相关代谢对表观遗传学和治疗学的影响,特别关注难治性恶性脑肿瘤——多形性胶质母细胞瘤(GBM)。

相似文献

1
mTORC2 in the center of cancer metabolic reprogramming.
Trends Endocrinol Metab. 2014 Jul;25(7):364-73. doi: 10.1016/j.tem.2014.04.002. Epub 2014 May 21.
2
mTORC2 and Metabolic Reprogramming in GBM: at the Interface of Genetics and Environment.
Brain Pathol. 2015 Nov;25(6):755-9. doi: 10.1111/bpa.12307.
3
mTORC2 activity in brain cancer: Extracellular nutrients are required to maintain oncogenic signaling.
Bioessays. 2016 Sep;38(9):839-44. doi: 10.1002/bies.201600026. Epub 2016 Jul 18.
4
mTOR complex 2 is an integrator of cancer metabolism and epigenetics.
Cancer Lett. 2020 May 28;478:1-7. doi: 10.1016/j.canlet.2020.03.001. Epub 2020 Mar 5.
5
mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc.
Cell Metab. 2013 Nov 5;18(5):726-39. doi: 10.1016/j.cmet.2013.09.013. Epub 2013 Oct 17.
6
Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.
Adv Biol Regul. 2015 Jan;57:64-74. doi: 10.1016/j.jbior.2014.09.004. Epub 2014 Sep 18.
8
ATP-site binding inhibitor effectively targets mTORC1 and mTORC2 complexes in glioblastoma.
Int J Oncol. 2016 Mar;48(3):1045-52. doi: 10.3892/ijo.2015.3311. Epub 2015 Dec 28.
9
mTORC2 dictates Warburg effect and drug resistance.
Cell Cycle. 2014;13(7):1053-4. doi: 10.4161/cc.28377. Epub 2014 Feb 28.
10
Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9406-11. doi: 10.1073/pnas.1511759112. Epub 2015 Jul 13.

引用本文的文献

2
NIPAL4 is an important marker for clear cell renal cell carcinoma prognosis and immunotherapy.
Sci Rep. 2025 Mar 26;15(1):10448. doi: 10.1038/s41598-025-92811-1.
4
AZD8055 Is More Effective Than Rapamycin in Inhibiting Proliferation and Promoting Mitochondrial Clearance in Erythroid Differentiation.
Anal Cell Pathol (Amst). 2024 Oct 8;2024:2639464. doi: 10.1155/2024/2639464. eCollection 2024.
5
A novel gain-of-function mutation in partially suppresses mTORC2 defects.
MicroPubl Biol. 2024 Sep 30;2024. doi: 10.17912/micropub.biology.001163. eCollection 2024.
6
Systems Biology and Cytokines Potential Role in Lung Cancer Immunotherapy Targeting Autophagic Axis.
Biomedicines. 2023 Oct 5;11(10):2706. doi: 10.3390/biomedicines11102706.
8
mTORC2 Is Activated under Hypoxia and Could Support Chronic Myeloid Leukemia Stem Cells.
Int J Mol Sci. 2023 Jan 8;24(2):1234. doi: 10.3390/ijms24021234.
9
Phosphoproteomic Analysis Defines BABAM1 as mTORC2 Downstream Effector Promoting DNA Damage Response in Glioblastoma Cells.
J Proteome Res. 2022 Dec 2;21(12):2893-2904. doi: 10.1021/acs.jproteome.2c00240. Epub 2022 Oct 31.
10
Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer.
Cell Oncol (Dordr). 2022 Oct;45(5):831-859. doi: 10.1007/s13402-022-00706-4. Epub 2022 Aug 29.

本文引用的文献

2
Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues.
Tumour Biol. 2014 May;35(5):4457-68. doi: 10.1007/s13277-013-1588-z. Epub 2014 Jan 5.
3
Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae.
Cell Rep. 2013 Dec 26;5(6):1725-36. doi: 10.1016/j.celrep.2013.11.040. Epub 2013 Dec 19.
4
Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA.
Science. 2014 Jan 3;343(6166):72-6. doi: 10.1126/science.1241328. Epub 2013 Dec 5.
5
27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology.
Science. 2013 Nov 29;342(6162):1094-8. doi: 10.1126/science.1241908.
7
Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development.
Dis Model Mech. 2013 Nov;6(6):1353-63. doi: 10.1242/dmm.011338.
8
9
mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc.
Cell Metab. 2013 Nov 5;18(5):726-39. doi: 10.1016/j.cmet.2013.09.013. Epub 2013 Oct 17.
10
The somatic genomic landscape of glioblastoma.
Cell. 2013 Oct 10;155(2):462-77. doi: 10.1016/j.cell.2013.09.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验