Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan.
EcoTopia Science Institute, Nagoya University, Chikusa, Nagoya 464-8603, Japan.
Bioresour Technol. 2014 Jul;164:232-40. doi: 10.1016/j.biortech.2014.04.071. Epub 2014 May 5.
Immobilized solid-phase humin on a graphite electrode set at -500 mV (vs. standard hydrogen electrode) significantly enhanced the microbial reductive dechlorination of pentachlorophenol as a stable solid-phase redox mediator in bioelectrochemical systems (BESs). Compared with the suspended system, the immobilized system dechlorinated PCP at a much higher efficiency, achieving 116 μmol Cl(-)g(-1) humin d(-1). Fluorescence microscopy showed a conspicuous growth of bacteria on the negatively poised immobilized humin. Electron balance analyses suggested that the electrons required for microbial dechlorination were supplied primarily from the humin-immobilized electrode. Microbial community analyses based on 16S rRNA genes showed that Dehalobacter and Desulfovibrio grew on the immobilized humin as potential dechlorinators. These findings extend the potential of BESs using immobilized solid-phase humin as the redox mediator for in situ bioremediation, given the wide distribution of humin and its efficiency and stability as a mediator.
固定在石墨电极上的固相腐殖质在 -500 mV(相对于标准氢电极)下显著增强了微生物对五氯苯酚的还原脱氯作用,作为生物电化学系统 (BESs) 中的稳定固相氧化还原介体。与悬浮体系相比,固定体系对 PCP 的脱氯效率要高得多,达到 116 μmol Cl(-)g(-1)腐殖质 d(-1)。荧光显微镜显示,在带负电的固定腐殖质上细菌明显生长。电子平衡分析表明,微生物脱氯所需的电子主要来自腐殖质固定电极。基于 16S rRNA 基因的微生物群落分析表明,脱氯杆菌和脱硫弧菌在固定腐殖质上生长,作为潜在的脱氯剂。鉴于腐殖质的广泛分布及其作为介体的效率和稳定性,这些发现扩展了使用固定固相腐殖质作为氧化还原介体的 BESs 原位生物修复的潜力。