Suppr超能文献

基于局部独立投影分类的脑肿瘤分割

Brain tumor segmentation based on local independent projection-based classification.

作者信息

Huang Meiyan, Yang Wei, Wu Yao, Jiang Jun, Chen Wufan, Feng Qianjin

出版信息

IEEE Trans Biomed Eng. 2014 Oct;61(10):2633-45. doi: 10.1109/TBME.2014.2325410. Epub 2014 May 19.

Abstract

Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.

摘要

脑肿瘤分割是早期肿瘤诊断和放射治疗计划的重要步骤。尽管已经提出了众多脑肿瘤分割方法,但由于脑肿瘤MRI图像呈现出复杂的特征,如肿瘤外观的高度多样性和模糊的肿瘤边界,增强肿瘤分割方法仍然具有挑战性。为了解决这个问题,我们提出了一种用于MRI图像的新型自动肿瘤分割方法。该方法将肿瘤分割视为一个分类问题。此外,基于局部独立投影的分类(LIPC)方法用于将每个体素分类到不同的类别中。通过将局部独立投影引入经典分类模型,得出了一个新颖的分类框架。局部性在LIPC的局部独立投影计算中很重要。在确定局部锚点嵌入与其他编码方法相比是否更适用于求解线性投影权重时,也考虑了局部性。此外,LIPC通过学习softmax回归模型来考虑不同类别的数据分布,这可以进一步提高分类性能。在本研究中,80幅带有真实数据的脑肿瘤MRI图像用作训练数据,40幅没有真实数据的图像用作测试数据。测试数据的分割结果由在线评估工具进行评估。该方法在真实患者数据上分割完整肿瘤、肿瘤核心和增强肿瘤的平均骰子相似度分别为0.84、0.685和0.585。这些结果与其他现有最先进方法相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验