Suppr超能文献

通过校准和主成分分析(PCA)建模增强动态肌电图-力估计

Enhanced dynamic EMG-force estimation through calibration and PCI modeling.

作者信息

Hashemi Javad, Morin Evelyn, Mousavi Parvin, Hashtrudi-Zaad Keyvan

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2015 Jan;23(1):41-50. doi: 10.1109/TNSRE.2014.2325713. Epub 2014 May 21.

Abstract

To accurately estimate muscle forces using electromyogram (EMG) signals, precise EMG amplitude estimation, and a modeling scheme capable of coping with the nonlinearities and dynamics of the EMG-force relationship are needed. In this work, angle-based EMG amplitude calibration and parallel cascade identification (PCI) modeling are combined for EMG-based force estimation in dynamic contractions, including concentric and eccentric contractions of the biceps brachii and triceps brachii muscles. Angle-based calibration has been shown to improve surface EMG (SEMG) based force estimation during isometric contractions through minimization of the effects of joint angle related factors, and PCI modeling captures both the nonlinear and dynamic properties of the process. SEMG data recorded during constant force, constant velocity, and varying force, varying velocity flexion and extension trials are calibrated. The calibration values are obtained at specific elbow joint angles and interpolated to cover a continuous range of joint angles. The calibrated data are used in PCI models to estimate the force induced at the wrist. The experimental results show the effectiveness of the calibration scheme, combined with PCI modeling. For the constant force, constant velocity trials, minimum %RMSE of 8.3% is achieved for concentric contractions, 10.3% for eccentric contractions and 33.3% for fully dynamic contractions. Force estimation accuracy is superior in concentric contractions in comparison to eccentric contractions , which may be indicative of more nonlinearity in the eccentric SEMG-force relationship.

摘要

为了使用肌电图(EMG)信号准确估计肌肉力量,需要精确的EMG幅度估计以及能够应对EMG与力量关系的非线性和动态特性的建模方案。在这项工作中,基于角度的EMG幅度校准和平行级联识别(PCI)建模相结合,用于动态收缩中基于EMG的力量估计,包括肱二头肌和肱三头肌的向心收缩和离心收缩。基于角度的校准已被证明可通过最小化关节角度相关因素的影响来改善等长收缩期间基于表面肌电图(SEMG)的力量估计,并且PCI建模捕获了该过程的非线性和动态特性。对在恒力、恒速以及变力、变速屈伸试验期间记录的SEMG数据进行校准。校准值在特定的肘关节角度处获得,并进行插值以覆盖连续的关节角度范围。将校准后的数据用于PCI模型,以估计手腕处产生的力量。实验结果表明了校准方案与PCI建模相结合的有效性。对于恒力、恒速试验,向心收缩的最小均方根误差百分比(%RMSE)为8.3%,离心收缩为10.3%,完全动态收缩为33.3%。与离心收缩相比,向心收缩中的力量估计准确性更高,这可能表明离心SEMG与力量关系中存在更多非线性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验