Department of Radiation Oncology,Lineberger Comprehensive Cancer Center, andLaboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China;
Department of Radiation Oncology,Lineberger Comprehensive Cancer Center, andCurriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2414-22. doi: 10.1073/pnas.1315605111. Epub 2014 May 28.
The tumor suppressor p53 has recently been shown to regulate energy metabolism through multiple mechanisms. However, the in vivo signaling pathways related to p53-mediated metabolic regulation remain largely uncharacterized. By using mice bearing a single amino acid substitution at cysteine residue 305 of mouse double minute 2 (Mdm2(C305F)), which renders Mdm2 deficient in binding ribosomal proteins (RPs) RPL11 and RPL5, we show that the RP-Mdm2-p53 signaling pathway is critical for sensing nutrient deprivation and maintaining liver lipid homeostasis. Although the Mdm2(C305F) mutation does not significantly affect growth and development in mice, this mutation promotes fat accumulation under normal feeding conditions and hepatosteatosis under acute fasting conditions. We show that nutrient deprivation inhibits rRNA biosynthesis, increases RP-Mdm2 interaction, and induces p53-mediated transactivation of malonyl-CoA decarboxylase (MCD), which catalyzes the degradation of malonyl-CoA to acetyl-CoA, thus modulating lipid partitioning. Fasted Mdm2(C305F) mice demonstrate attenuated MCD induction and enhanced malonyl-CoA accumulation in addition to decreased oxidative respiration and increased fatty acid accumulation in the liver. Thus, the RP-Mdm2-p53 pathway appears to function as an endogenous sensor responsible for stimulating fatty acid oxidation in response to nutrient depletion.
抑癌基因 p53 最近被证实可通过多种机制调节能量代谢。然而,p53 介导的代谢调控相关的体内信号通路在很大程度上仍未被阐明。通过使用在双微体 2(Mdm2(C305F))的半胱氨酸残基 305 处发生单个氨基酸取代的小鼠,使 Mdm2 缺乏与核糖体蛋白(RPs)RPL11 和 RPL5 结合的能力,我们表明 RP-Mdm2-p53 信号通路对于感知营养缺乏和维持肝脏脂质稳态至关重要。尽管 Mdm2(C305F)突变不会显著影响小鼠的生长和发育,但这种突变在正常喂养条件下促进脂肪积累,在急性禁食条件下促进肝脂肪变性。我们表明,营养缺乏会抑制 rRNA 生物合成,增加 RP-Mdm2 相互作用,并诱导 p53 介导的丙二酰辅酶 A 脱羧酶(MCD)的反式激活,该酶催化丙二酰辅酶 A 降解为乙酰辅酶 A,从而调节脂质分配。禁食的 Mdm2(C305F)小鼠表现出 MCD 诱导减弱和丙二酰辅酶 A 积累增加,以及氧化呼吸减少和脂肪酸在肝脏中积累增加。因此,RP-Mdm2-p53 途径似乎作为一种内源性传感器,负责在营养物质耗竭时刺激脂肪酸氧化。