Jones K S, Assar S, Harnpanich D, Bouillon R, Lambrechts D, Prentice A, Schoenmakers I
Medical Research Council Human Nutrition Research (K.S.J., S.A., D.H., A.P., I.S.), Cambridge CB1 9NL, United Kingdom; Medical Research Council Keneba (K.S.J., A.P.), The Gambia; Clinic and Laboratory of Experimental Medicine and Endocrinology (R.B.) and Laboratory for Translational Genetics (D.L.), Katholieke Universiteit, B-3000 Leuven, Belgium; and Vesalius Research Center (D.L.), VIB, Katholieke Universiteit, B-3000, Leuven, Belgium.
J Clin Endocrinol Metab. 2014 Sep;99(9):3373-81. doi: 10.1210/jc.2014-1714. Epub 2014 Jun 2.
There is uncertainty over the equivalence of vitamins D2 and D3 to maintain plasma 25-hydroxyvitamin D (25(OH)D).
The objective of the study was to compare the plasma half-lives of 25(OH)D2 and 25(OH)D3 in two distinct populations with different dietary calcium intake and 25(OH)D status.
Healthy men (aged 24 and 39 y), resident in The Gambia (n = 18) or the United Kingdom (n = 18) participated in the study.
The intervention included an oral tracer dose of deuterated-25(OH)D2 and deuterated-25(OH)D3 (both 40 nmol). Blood samples were collected over 33 days.
25(OH)D2 and 25(OH)D3 plasma half-lives, concentrations of 25(OH)D, and vitamin D binding protein (DBP) and DBP genotypes were measured.
25(OH)D2 half-life [mean (SD)] [13.9 (2.6) d] was shorter than 25(OH)D3 half-life [15.1 (3.1) d; P = .001] for countries combined, and in Gambians [12.8 (2.3) d vs 14.7 (3.5) d; P < .001], but not in the United Kingdom [15.1 (2.4) d vs 15.6 (2.5) d; P = .3]. 25(OH)D concentration was 69 (13) and 29 (11) nmol/L (P < .0001), and the DBP concentration was 259 (33) and 269 (23) mg/L (P = .4) in The Gambia and United Kingdom, respectively. Half-lives were positively associated with plasma DBP concentration for countries combined [25(OH)D2 half-life: regression coefficient (SE) 0.03 (0.01) d per 1 mg/L DBP, P = .03; 25(OH)D3 half-life: 0.04 (0.02) d, P = .02] and in Gambians [25(OH)D2 half-life: 0.04 (0.01) d; P = .02; 25(OH)D3 half-life: 0.06 (0.02) d, P = .01] but not in UK participants. The DBP concentration × country interactions were not significant. DBP Gc1f/1f homozygotes had shorter 25(OH)D2 half-lives compared with other combined genotypes (P = .007) after correction for country.
25(OH)D2 half-life was shorter than 25(OH)D3 half-life, and half-lives were affected by DBP concentration and genotype. The stable isotope 25(OH)D half-life measurements provide a novel tool to investigate vitamin D metabolism and vitamin D expenditure and aid in the assessment of vitamin D requirements.
维生素D2和D3在维持血浆25-羟基维生素D(25(OH)D)水平方面是否等效尚不确定。
本研究的目的是比较两个具有不同膳食钙摄入量和25(OH)D状态的不同人群中25(OH)D2和25(OH)D3的血浆半衰期。
居住在冈比亚(n = 18)或英国(n = 18)的健康男性(年龄在24至39岁之间)参与了本研究。
干预包括口服示踪剂量的氘代-25(OH)D2和氘代-25(OH)D3(均为40 nmol)。在33天内采集血样。
测量25(OH)D2和25(OH)D3的血浆半衰期、25(OH)D浓度、维生素D结合蛋白(DBP)以及DBP基因型。
合并两个国家的数据后,25(OH)D2的半衰期[均值(标准差)][13.9(2.6)天]短于25(OH)D3的半衰期[15.1(3.1)天;P = 0.001],在冈比亚人群中也是如此[12.8(2.3)天对14.7(3.5)天;P < 0.001],但在英国人群中并非如此[15.1(2.4)天对15.6(2.5)天;P = 0.3]。冈比亚和英国的25(OH)D浓度分别为69(13)和29(11)nmol/L(P < 0.0001),DBP浓度分别为259(33)和269(23)mg/L(P = 0.4)。合并两个国家的数据后,半衰期与血浆DBP浓度呈正相关[25(OH)D2半衰期:回归系数(标准误)为每1 mg/L DBP 0.03(0.01)天,P = 0.03;25(OH)D3半衰期:0.04(0.02)天,P = 0.02],在冈比亚人群中也是如此[25(OH)D2半衰期:0.04(0.01)天;P = 0.02;25(OH)D3半衰期:0.06(0.02)天,P = 0.01],但在英国参与者中并非如此。DBP浓度×国家的交互作用不显著。在校正国家因素后,DBP Gc1f/1f纯合子的25(OH)D2半衰期短于其他合并基因型(P = 0.007)。
25(OH)D2的半衰期短于25(OH)D3的半衰期,且半衰期受DBP浓度和基因型的影响。稳定同位素25(OH)D半衰期测量为研究维生素D代谢和维生素D消耗提供了一种新工具,并有助于评估维生素D需求量。