Suppr超能文献

深部地幔结构作为地球内部和表面运动的参考框架。

Deep mantle structure as a reference frame for movements in and on the Earth.

机构信息

Centre for Earth Evolution and Dynamics, University of Oslo, 0316 Oslo, Norway;Centre for Advanced Study, 0271 Oslo, Norway;Geodynamics, Geological Survey of Norway, 7491 Trondheim, Norway;School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg WITS 2050, South Africa;

Centre for Advanced Study, 0271 Oslo, Norway;Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109;

出版信息

Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8735-40. doi: 10.1073/pnas.1318135111. Epub 2014 Jun 2.

Abstract

Earth's residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core-mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth's surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core-mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth's axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth's mantle may have operated throughout the entire Phanerozoic.

摘要

地球的剩余重力位形主要由 2 阶模式主导,在非洲和太平洋下方地核-地幔边界的大低速剪切波速度区之上存在隆起区域。这些深部地幔体的边缘,当径向投影到地球表面时,与自大约 3.2 亿年前泛古陆形成以来,大火成岩省和金伯利岩的重建位置相关。我们使用这种从地表到地核-地幔边界的相关性来定位大陆的经度,并采用一种新的迭代方法来定义一个经过真正极移校正的古地磁参考框架,从而构建了一个回溯到最早古生代(5.4 亿年前)的绝对板块运动模型。对于古生代,我们确定了六个缓慢、振荡的真正极移阶段,在此期间,地球最小转动惯量轴类似于中生代时期的轴。古生代真正极移的速率(<1°/Ma)与中生代的速率兼容,但绝对板块速度平均是其两倍。我们的重建产生了地质上合理的情景,大火成岩省和金伯利岩的源区位于大低速剪切波速度区的边缘,与中生代和新生代的情况相同。这种绝对运动学模型表明,地球地幔中的 2 阶对流模式可能在整个显生宙期间一直存在。

相似文献

1
Deep mantle structure as a reference frame for movements in and on the Earth.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8735-40. doi: 10.1073/pnas.1318135111. Epub 2014 Jun 2.
2
Absolute plate motions and true polar wander in the absence of hotspot tracks.
Nature. 2008 Apr 3;452(7187):620-3. doi: 10.1038/nature06824.
3
Secular change of true polar wander over the past billion years.
Sci Adv. 2022 Oct 14;8(41):eabo2753. doi: 10.1126/sciadv.abo2753.
4
An Explanation for Earth's Long-Term Rotational Stability.
Science. 1997 Jan 17;275(5298):372-5. doi: 10.1126/science.275.5298.372.
5
Diamonds sampled by plumes from the core-mantle boundary.
Nature. 2010 Jul 15;466(7304):352-5. doi: 10.1038/nature09216.
6
Magnetic field reversals, polar wander, and core-mantle coupling.
Science. 1987 Sep 4;237(4819):1140-7. doi: 10.1126/science.237.4819.1140.
7
A Paleolatitude Calculator for Paleoclimate Studies.
PLoS One. 2015 Jun 10;10(6):e0126946. doi: 10.1371/journal.pone.0126946. eCollection 2015.
8
Stability of active mantle upwelling revealed by net characteristics of plate tectonics.
Nature. 2013 Jun 27;498(7455):479-82. doi: 10.1038/nature12203.
9
Late cretaceous polar wander of the pacific plate: evidence of a rapid true polar wander event.
Science. 2000 Jan 21;287(5452):455-9. doi: 10.1126/science.287.5452.455.
10

引用本文的文献

1
Global 3D model of mantle attenuation using seismic normal modes.
Nature. 2025 Jan;637(8048):1131-1135. doi: 10.1038/s41586-024-08322-y. Epub 2025 Jan 22.
2
Completing the loop of the Late Jurassic-Early Cretaceous true polar wander event.
Nat Commun. 2024 Mar 12;15(1):2183. doi: 10.1038/s41467-024-46466-7.
5
Vegetation and climate change at the southern margin of the Neo-Tethys during the Cenomanian (Late Cretaceous): Evidence from Egypt.
PLoS One. 2023 Jan 30;18(1):e0281008. doi: 10.1371/journal.pone.0281008. eCollection 2023.
7
Early Cambrian renewal of the geodynamo and the origin of inner core structure.
Nat Commun. 2022 Jul 19;13(1):4161. doi: 10.1038/s41467-022-31677-7.
8
Mapping global kimberlite potential from reconstructions of mantle flow over the past billion years.
PLoS One. 2022 Jun 9;17(6):e0268066. doi: 10.1371/journal.pone.0268066. eCollection 2022.
9
Assembly of the basal mantle structure beneath Africa.
Nature. 2022 Mar;603(7903):846-851. doi: 10.1038/s41586-022-04538-y. Epub 2022 Mar 30.
10
A Late Cretaceous true polar wander oscillation.
Nat Commun. 2021 Jun 15;12(1):3629. doi: 10.1038/s41467-021-23803-8.

本文引用的文献

1
Stability of active mantle upwelling revealed by net characteristics of plate tectonics.
Nature. 2013 Jun 27;498(7455):479-82. doi: 10.1038/nature12203.
2
Intra-oceanic subduction shaped the assembly of Cordilleran North America.
Nature. 2013 Apr 4;496(7443):50-6. doi: 10.1038/nature12019.
3
Mechanisms for oscillatory true polar wander.
Nature. 2012 Nov 8;491(7423):244-8. doi: 10.1038/nature11571.
4
Supercontinent cycles and the calculation of absolute palaeolongitude in deep time.
Nature. 2012 Feb 8;482(7384):208-11. doi: 10.1038/nature10800.
5
Diamonds sampled by plumes from the core-mantle boundary.
Nature. 2010 Jul 15;466(7304):352-5. doi: 10.1038/nature09216.
6
Upside-down differentiation and generation of a 'primordial' lower mantle.
Nature. 2010 Feb 18;463(7283):930-3. doi: 10.1038/nature08824.
7
Absolute plate motions and true polar wander in the absence of hotspot tracks.
Nature. 2008 Apr 3;452(7187):620-3. doi: 10.1038/nature06824.
8
A crystallizing dense magma ocean at the base of the Earth's mantle.
Nature. 2007 Dec 6;450(7171):866-9. doi: 10.1038/nature06355.
9
Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle.
Science. 1999 Aug 20;285(5431):1231-6. doi: 10.1126/science.285.5431.1231.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验