Suppr超能文献

一氧化氮通过缺氧引发的细胞可螯合铁增加诱导二亚硝基铁配合物形成,从而形成亚硝基硫醇并防止芬顿化学反应。

Nitrosothiol formation and protection against Fenton chemistry by nitric oxide-induced dinitrosyliron complex formation from anoxia-initiated cellular chelatable iron increase.

作者信息

Li Qian, Li Chuanyu, Mahtani Harry K, Du Jian, Patel Aashka R, Lancaster Jack R

机构信息

From the Department of Anesthesiology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294,

From the Department of Anesthesiology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294.

出版信息

J Biol Chem. 2014 Jul 18;289(29):19917-27. doi: 10.1074/jbc.M114.569764. Epub 2014 Jun 2.

Abstract

Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with (•)NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged (•)NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief (•)NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1-2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief (•)NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of (•)NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of (•)NO.

摘要

二亚硝基铁配合物(DNIC)已在多种与(•)NO相关的病理环境中被发现。然而,细胞内DNIC的铁来源尚不清楚。先前关于这个问题的研究使用长时间的(•)NO暴露可能会产生误导,因为细胞内铁在不同来源之间移动。我们在此报告,短暂的(•)NO暴露仅导致几乎检测不到的DNIC,但在缺氧1-2小时后水平会急剧增加。这种增加在数量和时间上与可螯合铁的增加相似,并且短暂的(•)NO处理可防止去铁胺检测到这种缺氧诱导的可螯合铁增加。DNIC的形成非常迅速,以至于它受到(•)NO和可螯合铁可用性的限制。我们利用这种能力选择性地操纵细胞内可螯合铁水平,并为内源性DNIC形成的两种细胞功能提供证据,即保护免受缺氧诱导的芬顿反应产生的活性氧化学作用以及通过蛋白质亚硝基硫醇(RSNO)的转亚硝基化形成。在这些高可螯合铁水平下,RSNO的水平与DNIC水平相当,这表明在这些条件下,DNIC和RSNO都是细胞内最丰富的(•)NO加合物。

相似文献

2
Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4671-6. doi: 10.1073/pnas.0710416106. Epub 2009 Mar 4.
3
Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance.
Free Radic Biol Med. 2011 Oct 15;51(8):1558-66. doi: 10.1016/j.freeradbiomed.2011.06.030. Epub 2011 Jul 5.
4
Nitric oxide-induced conversion of cellular chelatable iron into macromolecule-bound paramagnetic dinitrosyliron complexes.
J Biol Chem. 2008 Oct 24;283(43):28926-33. doi: 10.1074/jbc.M707862200. Epub 2008 May 14.
5
Is S-nitrosocysteine a true surrogate for nitric oxide?
Antioxid Redox Signal. 2012 Oct 1;17(7):962-8. doi: 10.1089/ars.2012.4543. Epub 2012 Mar 12.
6
Nitric oxide reduces oxidative stress in cancer cells by forming dinitrosyliron complexes.
Nitric Oxide. 2018 Jun 1;76:37-44. doi: 10.1016/j.niox.2018.03.003. Epub 2018 Mar 6.
7
Differential mitochondrial dinitrosyliron complex formation by nitrite and nitric oxide.
Redox Biol. 2018 May;15:277-283. doi: 10.1016/j.redox.2017.12.007. Epub 2017 Dec 23.
9
The mechanisms of S-nitrosothiol decomposition catalyzed by iron.
Nitric Oxide. 2004 Mar;10(2):60-73. doi: 10.1016/j.niox.2004.02.005.
10
Crucial role of lysosomal iron in the formation of dinitrosyl iron complexes in vivo.
J Biol Inorg Chem. 2007 Mar;12(3):345-52. doi: 10.1007/s00775-006-0192-8. Epub 2006 Nov 29.

引用本文的文献

2
Effects of Nitrosyl Iron Complexes with Thiol, Phosphate, and Thiosulfate Ligands on Hemoglobin.
Int J Mol Sci. 2024 Jun 29;25(13):7194. doi: 10.3390/ijms25137194.
3
Insights on the endogenous labile iron pool binding properties.
Biometals. 2024 Oct;37(5):1065-1077. doi: 10.1007/s10534-024-00591-4. Epub 2024 May 1.
4
Histidine-Bound Dinitrosyl Iron Complexes: Antioxidant and Antiradical Properties.
Int J Mol Sci. 2023 Dec 7;24(24):17236. doi: 10.3390/ijms242417236.
8
Neuroprotective role of nitric oxide inhalation and nitrite in a Neonatal Rat Model of Hypoxic-Ischemic Injury.
PLoS One. 2022 May 11;17(5):e0268282. doi: 10.1371/journal.pone.0268282. eCollection 2022.
9
The Labile Iron Pool Reacts Rapidly and Catalytically with Peroxynitrite.
Biomolecules. 2021 Sep 9;11(9):1331. doi: 10.3390/biom11091331.
10
Gaseous Nitric Oxide and Dinitrosyl Iron Complexes with Thiol-Containing Ligands as Potential Medicines that Can Relieve COVID-19.
Biophysics (Oxf). 2021;66(1):155-163. doi: 10.1134/S0006350921010218. Epub 2021 Apr 27.

本文引用的文献

1
Translocation of iron from lysosomes to mitochondria during ischemia predisposes to injury after reperfusion in rat hepatocytes.
Free Radic Biol Med. 2013 Oct;63:243-53. doi: 10.1016/j.freeradbiomed.2013.05.004. Epub 2013 May 9.
2
Mammalian iron metabolism and its control by iron regulatory proteins.
Biochim Biophys Acta. 2012 Sep;1823(9):1468-83. doi: 10.1016/j.bbamcr.2012.05.010. Epub 2012 May 17.
4
Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease.
J Mol Med (Berl). 2012 Mar;90(3):233-44. doi: 10.1007/s00109-012-0878-z. Epub 2012 Feb 24.
5
Is S-nitrosocysteine a true surrogate for nitric oxide?
Antioxid Redox Signal. 2012 Oct 1;17(7):962-8. doi: 10.1089/ars.2012.4543. Epub 2012 Mar 12.
6
Mitochondrial permeability transition in rat hepatocytes after anoxia/reoxygenation: role of Ca2+-dependent mitochondrial formation of reactive oxygen species.
Am J Physiol Gastrointest Liver Physiol. 2012 Apr;302(7):G723-31. doi: 10.1152/ajpgi.00082.2011. Epub 2012 Jan 12.
8
Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations.
Free Radic Biol Med. 2012 Jan 1;52(1):1-6. doi: 10.1016/j.freeradbiomed.2011.09.030. Epub 2011 Oct 2.
10
Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance.
Free Radic Biol Med. 2011 Oct 15;51(8):1558-66. doi: 10.1016/j.freeradbiomed.2011.06.030. Epub 2011 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验