Suppr超能文献

基于生物混合细胞的微系统致动器。

Bio-hybrid cell-based actuators for microsystems.

机构信息

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

出版信息

Small. 2014 Oct 15;10(19):3831-51. doi: 10.1002/smll.201400384. Epub 2014 Jun 4.

Abstract

As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

摘要

随着我们朝着在纳米和微米尺度上执行任务的设备小型化方向发展,开发新的致动、传感和控制方法变得越来越重要。在过去的十年中,生物混合方法已被研究为一种有前途的新方法,可以克服缩小机器人和其他功能设备的挑战。这些方法将生物细胞与人工组件集成在一起,因此可以利用生物细胞的固有致动和传感功能。在这里,综述了生物混合致动的最新进展,并讨论了设计、制造和控制生物混合微系统所面临的挑战。作为案例研究,重点放在细菌驱动的微型游泳者的开发上,该微型游泳者已被研究作为靶向药物输送载体。最后,提供了对这些系统发展的未来展望。预计生物和人工组件的持续集成将能够在未来以更小的规模执行任务,从而在微尺度上实现功能系统的并行和分布式运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验