Suppr超能文献

项目反应理论与运动行为测量

Item response theory and the measurement of motor behavior.

作者信息

Safrit M J, Cohen A S, Costa M G

机构信息

University of Wisconsin-Madison.

出版信息

Res Q Exerc Sport. 1989 Dec;60(4):325-35. doi: 10.1080/02701367.1989.10607459.

Abstract

Item response theory (IRT) has been the focus of intense research and development activity in educational and psychological measurement during the past decade. Because this theory can provide more precise information about test items than other theories usually used in measuring motor behavior, the application of IRT in physical education and exercise science merits investigation. In IRT, the difficulty level of each item (e.g., trial or task) can be estimated and placed on the same scale as the ability of the examinee. Using this information, the test developer can determine the ability levels at which the test functions best. Equating the scores of individuals on two or more items or tests can be handled efficiently by applying IRT. The precision of the identification of performance standards in a mastery test context can be enhanced, as can adaptive testing procedures. In this tutorial, several potential benefits of applying IRT to the measurement of motor behavior were described. An example is provided using bowling data and applying the graded-response form of the Rasch IRT model. The data were calibrated and the goodness of fit was examined. This analysis is described in a step-by-step approach. Limitations to using an IRT model with a test consisting of repeated measures were noted.

摘要

项目反应理论(IRT)在过去十年一直是教育和心理测量领域密集研究与开发活动的焦点。由于该理论相较于通常用于测量运动行为的其他理论,能够提供有关测试项目更精确的信息,因此IRT在体育教育和运动科学中的应用值得研究。在IRT中,每个项目(如试验或任务)的难度水平可以被估计,并与考生的能力置于同一量表上。利用这些信息,测试开发者可以确定测试发挥最佳功能的能力水平。通过应用IRT,可以有效地处理个体在两个或更多项目或测试上分数的等值问题。在掌握测试情境中,性能标准识别的精度以及自适应测试程序都可以得到提高。在本教程中,描述了将IRT应用于运动行为测量的几个潜在益处。提供了一个使用保龄球数据并应用Rasch IRT模型的等级反应形式的示例。对数据进行了校准并检查了拟合优度。该分析采用逐步方法进行描述。同时指出了在对由重复测量组成的测试使用IRT模型时的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验