Sahari Ali, Traore Mahama A, Scharf Birgit E, Behkam Bahareh
School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, 24061, USA.
Biomed Microdevices. 2014 Oct;16(5):717-25. doi: 10.1007/s10544-014-9876-y.
Several attenuated and non-pathogenic bacterial species have been demonstrated to actively target diseased sites and successfully deliver plasmid DNA, proteins and other therapeutic agents into mammalian cells. These disease-targeting bacteria can be employed for targeted delivery of therapeutic and imaging cargos in the form of a bio-hybrid system. The bio-hybrid drug delivery system constructed here is comprised of motile Escherichia coli MG1655 bacteria and elliptical disk-shaped polymeric microparticles. The transport direction for these vehicles can be controlled through biased random walk of the attached bacteria in presence of chemoattractant gradients in a process known as chemotaxis. In this work, we utilize a diffusion-based microfluidic platform to establish steady linear concentration gradients of a chemoattractant and investigate the roles of chemotaxis and geometry in transport of bio-hybrid drug delivery vehicles. Our experimental results demonstrate for the first time that bacterial chemotactic response dominates the effect of body shape in extravascular transport; thus, the non-spherical system could be more favorable for drug delivery applications owing to the known benefits of using non-spherical particles for vascular transport (e.g. relatively long circulation time).
几种减毒和非致病性细菌已被证明能主动靶向病变部位,并成功地将质粒DNA、蛋白质和其他治疗剂递送至哺乳动物细胞中。这些靶向疾病的细菌可用于以生物杂交系统的形式靶向递送治疗和成像载荷。这里构建的生物杂交药物递送系统由运动性大肠杆菌MG1655细菌和椭圆形盘状聚合物微粒组成。在称为趋化作用的过程中,这些载体的运输方向可通过附着细菌在化学引诱剂梯度存在下的偏向随机游动来控制。在这项工作中,我们利用基于扩散的微流控平台建立化学引诱剂的稳定线性浓度梯度,并研究趋化作用和几何形状在生物杂交药物递送载体运输中的作用。我们的实验结果首次证明,细菌趋化反应在血管外运输中主导了身体形状的影响;因此,由于使用非球形颗粒进行血管运输具有已知的益处(例如相对较长的循环时间),非球形系统可能更有利于药物递送应用。