Oxford Centre for Collaborative Applied Mathematics, University of Oxford, Oxford OX1 3LB, UK Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK.
J R Soc Interface. 2014 Aug 6;11(97):20140352. doi: 10.1098/rsif.2014.0352.
Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media.
冲动在生物组织中的传播已知受到结构异质性的调节。在心肌中,更好地理解这种异质性如何影响电传播是推进我们对复极离散解释的关键。我们提出分数扩散模型作为结构异质可兴奋介质的新的数学描述,作为表示与组织非均质性相关的次级电源对总电场调制的一种手段。我们的结果与体内人类记录和不同动物物种的实验数据进行了分析,表明结构异质性是心脏电传播在组织水平上的相关特征的基础。这些特征包括动作电位(AP)形态上的传导效应、AP 持续时间沿激活途径的缩短以及由早期搏动对复极离散空间模式的渐进调制。所提出的方法在涉及可兴奋复杂介质的其他研究领域也可能具有重要意义。