Figley Matthew D, Bieri Gregor, Kolaitis Regina-Maria, Taylor J Paul, Gitler Aaron D
Department of Genetics and Neuroscience Graduate Program, Stanford University School of Medicine, Stanford, California 94305, and.
Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105.
J Neurosci. 2014 Jun 11;34(24):8083-97. doi: 10.1523/JNEUROSCI.0543-14.2014.
Mutations in the PFN1 gene encoding profilin 1 are a rare cause of familial amyotrophic lateral sclerosis (ALS). Profilin 1 is a well studied actin-binding protein but how PFN1 mutations cause ALS is unknown. The budding yeast, Saccharomyces cerevisiae, has one PFN1 ortholog. We expressed the ALS-linked profilin 1 mutant proteins in yeast, demonstrating a loss of protein stability and failure to restore growth to profilin mutant cells, without exhibiting gain-of-function toxicity. This model provides for simple and rapid screening of novel ALS-linked PFN1 variants. To gain insight into potential novel roles for profilin 1, we performed an unbiased, genome-wide synthetic lethal screen with yeast cells lacking profilin (pfy1Δ). Unexpectedly, deletion of several stress granule and processing body genes, including pbp1Δ, were found to be synthetic lethal with pfy1Δ. Mutations in ATXN2, the human ortholog of PBP1, are a known ALS genetic risk factor and ataxin 2 is a stress granule component in mammalian cells. Given this genetic interaction and recent evidence linking stress granule dynamics to ALS pathogenesis, we hypothesized that profilin 1 might also associate with stress granules. Here we report that profilin 1 and related protein profilin 2 are novel stress granule-associated proteins in mouse primary cortical neurons and in human cell lines and that ALS-linked mutations in profilin 1 alter stress granule dynamics, providing further evidence for the potential role of stress granules in ALS pathogenesis.
编码丝切蛋白1的PFN1基因突变是家族性肌萎缩侧索硬化症(ALS)的罕见病因。丝切蛋白1是一种经过充分研究的肌动蛋白结合蛋白,但PFN1突变如何导致ALS尚不清楚。芽殖酵母酿酒酵母有一个PFN1直系同源基因。我们在酵母中表达了与ALS相关的丝切蛋白1突变蛋白,结果表明蛋白稳定性丧失,且无法恢复丝切蛋白突变细胞的生长,同时未表现出功能获得性毒性。该模型为新型ALS相关PFN1变体的简单快速筛选提供了条件。为了深入了解丝切蛋白1的潜在新作用,我们对缺乏丝切蛋白(pfy1Δ)的酵母细胞进行了无偏向的全基因组合成致死筛选。出乎意料的是,发现缺失几个应激颗粒和加工小体基因(包括pbp1Δ)与pfy1Δ具有合成致死性。PBP1的人类直系同源基因ATXN2中的突变是已知的ALS遗传风险因素,而ataxin 2是哺乳动物细胞中的应激颗粒成分。鉴于这种遗传相互作用以及最近将应激颗粒动态变化与ALS发病机制联系起来的证据,我们推测丝切蛋白1可能也会与应激颗粒相互作用。在此我们报告,丝切蛋白1和相关蛋白丝切蛋白2在小鼠原代皮层神经元和人类细胞系中是新型应激颗粒相关蛋白,并且丝切蛋白1中与ALS相关的突变会改变应激颗粒动态变化,这为应激颗粒在ALS发病机制中的潜在作用提供了进一步证据。