Hollfelder Dominik, Frasch Manfred, Reim Ingolf
Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr, 5, 91058, Erlangen, Germany.
BMC Dev Biol. 2014 Jun 17;14:26. doi: 10.1186/1471-213X-14-26.
The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles.
Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis.
Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases.
果蝇心脏(背血管)是一个相对简单的管状器官,可作为心脏发生多个方面的模型。心脏形态发生、正常心脏功能和稳定性需要结构成分,但其身份和组装方式仅得到部分了解。还需要结构成分来连接心肌管与相邻细胞,如心包细胞和特殊肌肉纤维,即所谓的翼肌。
通过对果蝇胚胎中心脏和肌肉异常进行EMS诱变筛选,我们获得了两个基因相互作用互补组的多个突变体,这些突变体表现出相似的翼肌和心包细胞脱离表型。这些缺陷背后的分子损伤被鉴定为层粘连蛋白B1和Cg25C中的结构域特异性点突变,它们分别编码细胞外基质(ECM)成分层粘连蛋白β和胶原蛋白IVα1。在层粘连蛋白B1组中,特别有趣的是某些亚效突变体,它们在心脏形态发生和心脏ECM层形成方面存在明显缺陷,但与无效突变体不同的是,在其他组织中只有轻微缺陷。所有这些等位基因在层粘连蛋白LN结构域中携带聚集的错义突变。已鉴定的Cg25C突变体表现出较弱且主要对温度敏感的表型,这是由三螺旋形成结构域不同Gly-X-Y重复序列中的甘氨酸替代导致的。虽然在Cg25C突变体中初始基底膜组装未被消除,但在胚胎后期检测到硫酸乙酰肝素蛋白聚糖的掺入受损以及硫酸乙酰肝素蛋白聚糖和胶原蛋白IVα2链的细胞内积累。
心脏ECM的组装主要依赖于层粘连蛋白,而胶原蛋白IV对于其稳定是必需的。我们的数据强调了正确组装的ECM对于心脏组织及其侧向连接发育的重要性。突变分析表明,层粘连蛋白β LN结构域的β6/β3/β8界面对于连续心脏ECM层的形成至关重要。胶原蛋白IV三螺旋形成结构域中的某些突变可能发挥半显性作用,导致ECM结构整体减弱以及胶原蛋白和其他分子的细胞内积累,从而与在其他生物体中以及与胶原蛋白相关疾病中的观察结果相似。