Suppr超能文献

基于粒子滤波模型的非线性脑电图解码

Nonlinear EEG decoding based on a particle filter model.

作者信息

Zhang Jinhua, Wei Jiongjian, Wang Baozeng, Hong Jun, Wang Jing

机构信息

Xi'an Jiaotong University, Qujiang Campus, West Building No. 5, No. 99 YanXiang Road, YanTa District, Xi'an, Shaanxi 710045, China.

出版信息

Biomed Res Int. 2014;2014:159486. doi: 10.1155/2014/159486. Epub 2014 May 15.

Abstract

While the world is stepping into the aging society, rehabilitation robots play a more and more important role in terms of both rehabilitation treatment and nursing of the patients with neurological diseases. Benefiting from the abundant contents of movement information, electroencephalography (EEG) has become a promising information source for rehabilitation robots control. Although the multiple linear regression model was used as the decoding model of EEG signals in some researches, it has been considered that it cannot reflect the nonlinear components of EEG signals. In order to overcome this shortcoming, we propose a nonlinear decoding model, the particle filter model. Two- and three-dimensional decoding experiments were performed to test the validity of this model. In decoding accuracy, the results are comparable to those of the multiple linear regression model and previous EEG studies. In addition, the particle filter model uses less training data and more frequency information than the multiple linear regression model, which shows the potential of nonlinear decoding models. Overall, the findings hold promise for the furtherance of EEG-based rehabilitation robots.

摘要

随着世界步入老龄化社会,康复机器人在神经疾病患者的康复治疗和护理方面发挥着越来越重要的作用。得益于丰富的运动信息内容,脑电图(EEG)已成为康复机器人控制的一个有前景的信息源。尽管在一些研究中使用多元线性回归模型作为EEG信号的解码模型,但人们认为它无法反映EEG信号的非线性成分。为了克服这一缺点,我们提出了一种非线性解码模型——粒子滤波模型。进行了二维和三维解码实验以测试该模型的有效性。在解码精度方面,结果与多元线性回归模型及先前的EEG研究相当。此外,粒子滤波模型比多元线性回归模型使用的训练数据更少且频率信息更多,这显示了非线性解码模型的潜力。总体而言,这些发现为基于EEG的康复机器人的进一步发展带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fa8/4052086/d97acdd354de/BMRI2014-159486.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验