Suppr超能文献

二维红外光谱揭示了水在通道阻断药物与流感M2通道结合中的作用。

2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel.

作者信息

Ghosh Ayanjeet, Wang Jun, Moroz Yurii S, Korendovych Ivan V, Zanni Martin, DeGrado William F, Gai Feng, Hochstrasser Robin M

机构信息

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.

出版信息

J Chem Phys. 2014 Jun 21;140(23):235105. doi: 10.1063/1.4881188.

Abstract

Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

摘要

水是甲型流感病毒同四聚体M2质子通道不可或缺的一部分,它不仅有助于质子传导,还可能在稳定通道阻断药物方面发挥重要作用。在此,我们采用二维红外(2D IR)光谱和位点特异性红外探针,即由同位素标记的Ala30和Gly34残基产生的酰胺I带,来探究金刚烷胺或7,7-螺环胺的结合如何影响M2通道内的水动力学。我们的结果表明,在通道不导电的中性pH条件下,药物结合会导致通道内水的流动性显著增加。在pH 5.0时也观察到类似趋势,尽管差异变小。综上所述,这些结果表明通道内的水通过增加熵来促进药物结合。此外,在不同条件下为两种探针获得的二维红外光谱特征共同支持一种结合机制,即如分子动力学模拟所预测的,金刚烷胺类药物以其铵基指向组氨酸残基并与附近的水簇相互作用的方式停靠在通道中。我们相信这些发现对设计新型抗流感药物具有重要意义。

相似文献

3
Structural basis for the function and inhibition of an influenza virus proton channel.
Nature. 2008 Jan 31;451(7178):596-9. doi: 10.1038/nature06528.
4
Computational study of drug binding to the membrane-bound tetrameric M2 peptide bundle from influenza A virus.
Biochim Biophys Acta. 2011 Feb;1808(2):530-7. doi: 10.1016/j.bbamem.2010.03.025. Epub 2010 Apr 10.
5
[Design of an Efficient Inhibitor for the Influenza A Virus M2 Ion Channel].
Mol Biol (Mosk). 2020 Mar-Apr;54(2):321-332. doi: 10.31857/S0026898420020160.
6
Tidal surge in the M2 proton channel, sensed by 2D IR spectroscopy.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6115-20. doi: 10.1073/pnas.1103027108. Epub 2011 Mar 28.
7
Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus.
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1315-20. doi: 10.1073/pnas.1216526110. Epub 2013 Jan 9.
8
Resistance-Mutation (N31) Effects on Drug Orientation and Channel Hydration in Amantadine-Bound Influenza A M2.
J Phys Chem B. 2015 Sep 3;119(35):11548-59. doi: 10.1021/acs.jpcb.5b05808. Epub 2015 Aug 20.
9
How amantadine and rimantadine inhibit proton transport in the M2 protein channel.
J Mol Graph Model. 2008 Oct;27(3):342-8. doi: 10.1016/j.jmgm.2008.06.002. Epub 2008 Jun 8.
10

引用本文的文献

2
Water, Protons, and the Gating of Voltage-Gated Potassium Channels.
Membranes (Basel). 2024 Jan 29;14(2):37. doi: 10.3390/membranes14020037.
3
Determining the impact of gold nanoparticles on amyloid aggregation with 2D IR spectroscopy.
J Chem Phys. 2023 Mar 7;158(9):091101. doi: 10.1063/5.0136376.
4
Water in protein hydration and ligand recognition.
J Mol Recognit. 2019 Dec;32(12):e2810. doi: 10.1002/jmr.2810. Epub 2019 Aug 27.
5
Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils.
J Phys Chem B. 2018 Dec 13;122(49):11023-11029. doi: 10.1021/acs.jpcb.8b04642. Epub 2018 Jun 21.
6
Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy.
Chem Rev. 2017 Aug 23;117(16):10726-10759. doi: 10.1021/acs.chemrev.6b00582. Epub 2017 Jan 6.
8
Infrared and Fluorescence Assessment of Protein Dynamics: From Folding to Function.
J Phys Chem B. 2016 Jun 16;120(23):5103-13. doi: 10.1021/acs.jpcb.6b03199. Epub 2016 May 25.
10
Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR.
Chembiochem. 2016 Mar 2;17(5):415-20. doi: 10.1002/cbic.201500601. Epub 2016 Feb 16.

本文引用的文献

3
Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase.
Nat Chem. 2013 Mar;5(3):174-81. doi: 10.1038/nchem.1559. Epub 2013 Jan 27.
4
Structural basis for proton conduction and inhibition by the influenza M2 protein.
Protein Sci. 2012 Nov;21(11):1620-33. doi: 10.1002/pro.2158. Epub 2012 Oct 9.
5
A peptide's perspective of water dynamics.
Chem Phys. 2011 Nov 18;390(1):1-13. doi: 10.1016/j.chemphys.2011.07.018. Epub 2011 Aug 11.
7
M2 protein from influenza A: from multiple structures to biophysical and functional insights.
Curr Opin Virol. 2012 Apr;2(2):128-33. doi: 10.1016/j.coviro.2012.01.005. Epub 2012 Feb 16.
8
Ribonuclease S dynamics measured using a nitrile label with 2D IR vibrational echo spectroscopy.
J Phys Chem B. 2012 Apr 5;116(13):4034-42. doi: 10.1021/jp2122856. Epub 2012 Mar 23.
9
Water-assisted vibrational relaxation of a metal carbonyl complex studied with ultrafast 2D-IR.
J Phys Chem B. 2012 Mar 29;116(12):3754-9. doi: 10.1021/jp2125747. Epub 2012 Mar 14.
10
Evaluation of protein-ligand binding free energy focused on its entropic components.
J Comput Chem. 2012 Feb 15;33(5):550-60. doi: 10.1002/jcc.22891. Epub 2011 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验