LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
CNR-IFN and LNESS, via Anzani 42, 22100 Como, Italy.
Nat Mater. 2014 Aug;13(8):790-5. doi: 10.1038/nmat4015. Epub 2014 Jun 22.
By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.
通过利用电子设备内部载流子的自旋自由度,自旋电子学在量子计算和无损耗互连方面具有巨大的潜力。自旋电子器件中的纯自旋电流应由自旋电压发生器驱动,该发生器能够在不引起电荷电流的情况下驱动自旋分布达到非平衡状态。理想情况下,这种发生器应在室温下工作,与现有半导体技术高度集成,并且不会干扰其他利用铁磁材料的自旋电子构建块。在这里,我们通过实现类似于光伏发电机的自旋电子设备来满足这些要求。光伏发电机在空间上分离光激发的电子和空穴,而我们的设备则利用圆偏振光产生两个具有相反面内自旋投影的空间上明确的电子群体。这是通过用图案化的金属覆盖层(铂)调制进入半导体(锗)的光波的相位和幅度来实现的。由此产生的光衍射图案在半导体内部具有空间调制的手性,这得益于电偶极子选择规则,局部激发自旋极化电子。