Suppr超能文献

从社交传感器信号中进行基于主题的事件的隐私保护发现:关于推特的一项实验研究

Privacy-preserving discovery of topic-based events from social sensor signals: an experimental study on Twitter.

作者信息

Nguyen Duc T, Jung Jai E

机构信息

Department of Computer Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.

出版信息

ScientificWorldJournal. 2014;2014:204785. doi: 10.1155/2014/204785. Epub 2014 Apr 3.

Abstract

Social network services (e.g., Twitter and Facebook) can be regarded as social sensors which can capture a number of events in the society. Particularly, in terms of time and space, various smart devices have improved the accessibility to the social network services. In this paper, we present a social software platform to detect a number of meaningful events from information diffusion patterns on such social network services. The most important feature is to process the social sensor signal for understanding social events and to support users to share relevant information along the social links. The platform has been applied to fetch and cluster tweets from Twitter into relevant categories to reveal hot topics.

摘要

社交网络服务(如推特和脸书)可被视为能够捕捉社会中诸多事件的社交传感器。特别是在时间和空间方面,各种智能设备提升了使用社交网络服务的便利性。在本文中,我们提出了一个社交软件平台,用于从这类社交网络服务上的信息传播模式中检测出许多有意义的事件。其最重要的功能是处理社交传感器信号以理解社会事件,并支持用户沿着社交链接分享相关信息。该平台已被应用于从推特获取推文并将其聚类到相关类别中,以揭示热门话题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db14/3997908/75945d3f24b4/TSWJ2014-204785.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验