Rothman Adam J, Levina Elizaveta, Zhu Ji
Department of Statistics, University of Michigan, Ann Arbor, MI 48109-1107.
J Comput Graph Stat. 2010 Fall;19(4):947-962. doi: 10.1198/jcgs.2010.09188.
We propose a procedure for constructing a sparse estimator of a multivariate regression coefficient matrix that accounts for correlation of the response variables. This method, which we call multivariate regression with covariance estimation (MRCE), involves penalized likelihood with simultaneous estimation of the regression coefficients and the covariance structure. An efficient optimization algorithm and a fast approximation are developed for computing MRCE. Using simulation studies, we show that the proposed method outperforms relevant competitors when the responses are highly correlated. We also apply the new method to a finance example on predicting asset returns. An R-package containing this dataset and code for computing MRCE and its approximation are available online.
我们提出了一种构建多元回归系数矩阵稀疏估计量的方法,该方法考虑了响应变量之间的相关性。我们将此方法称为带协方差估计的多元回归(MRCE),它涉及惩罚似然法,同时估计回归系数和协方差结构。我们开发了一种高效的优化算法和一种快速近似方法来计算MRCE。通过模拟研究,我们表明当响应变量高度相关时,所提出的方法优于相关的竞争方法。我们还将这种新方法应用于一个预测资产回报的金融实例。一个包含此数据集以及用于计算MRCE及其近似值的代码的R包可在线获取。