Suppr超能文献

基于运动想象的脑机接口分类性能中预提示脑电节律的预测作用。

The predictive role of pre-cue EEG rhythms on MI-based BCI classification performance.

作者信息

Bamdadian Atieh, Guan Cuntai, Ang Kai Keng, Xu Jianxin

机构信息

Institute for Infocomm Research (I(2)R), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.

Institute for Infocomm Research (I(2)R), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore.

出版信息

J Neurosci Methods. 2014 Sep 30;235:138-44. doi: 10.1016/j.jneumeth.2014.06.011. Epub 2014 Jun 28.

Abstract

BACKGROUND

One of the main issues in motor imagery-based (MI-based) brain-computer interface (BCI) systems is a large variation in the classification performance of BCI users. However, the exact reason of low performance of some users is still under investigation. Having some prior knowledge about the performance of users may be helpful in understanding possible reasons of performance variations.

NEW METHOD

In this study a novel coefficient from pre-cue EEG rhythms is proposed. The proposed coefficient is computed from the spectral power of pre-cue EEG data for specific rhythms over different regions of the brain. The feasibility of predicting the classification performance of the MI-based BCI users from the proposed coefficient is investigated.

RESULTS

Group level analysis on N=17 healthy subjects showed that there is a significant correlation r=0.53 (p=0.02) between the proposed coefficient and the cross-validation accuracies of the subjects in performing MI. The results showed that subjects with higher cross-validation accuracies have yielded significantly higher values of the proposed coefficient and vice versa.

COMPARISON WITH EXISTING METHODS

In comparison with other previous predictors, this coefficient captures spatial information from the brain in addition to spectral information.

CONCLUSION

The result of using the proposed coefficient suggests that having higher frontal theta and lower posterior alpha prior to performing MI may enhance the BCI classification performance. This finding reveals prospect of designing a novel experiment to prepare the user towards improved motor imagery performance.

摘要

背景

基于运动想象(MI)的脑机接口(BCI)系统的主要问题之一是BCI用户的分类性能存在很大差异。然而,一些用户表现不佳的确切原因仍在研究中。了解用户的一些先验性能知识可能有助于理解性能差异的可能原因。

新方法

在本研究中,提出了一种基于提示前脑电节律的新系数。该系数是根据大脑不同区域特定节律的提示前脑电数据的谱功率计算得出的。研究了从该系数预测基于MI的BCI用户分类性能的可行性。

结果

对N = 17名健康受试者的组水平分析表明,所提出的系数与受试者执行MI时的交叉验证准确率之间存在显著相关性r = 0.53(p = 0.02)。结果表明,交叉验证准确率较高的受试者所得到的该系数值显著更高,反之亦然。

与现有方法的比较

与其他先前的预测指标相比,该系数除了谱信息外,还能从大脑中捕捉空间信息。

结论

使用该系数的结果表明,在执行MI之前具有较高的额叶θ波和较低的枕叶α波可能会提高BCI分类性能。这一发现揭示了设计一个新实验以使用户提高运动想象性能的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验