Suppr超能文献

使用简单模型和平直方图采样方法阐明吸附剂柔韧性对流体吸附的影响。

Elucidating the effects of adsorbent flexibility on fluid adsorption using simple models and flat-histogram sampling methods.

作者信息

Shen Vincent K, Siderius Daniel W

机构信息

Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA.

出版信息

J Chem Phys. 2014 Jun 28;140(24):244106. doi: 10.1063/1.4884124.

Abstract

Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phase transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called "breathing" of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.

摘要

我们使用平直方图蒙特卡罗方法,在两个旨在捕捉柔性吸附材料基本特征的简单狭缝孔状模型中研究方阱流体的吸附行为。这两个模型都需要关于柔性吸附材料本身的热力学信息作为输入。这项工作的一个重要组成部分涉及在适当的热力学(统计力学)系综中构建柔性孔模型,即渗透系综和巨正则系综的一个变体。使用平直方图方法计算的二维概率分布提供了确定吸附热力学所需的信息。例如,我们能够精确确定多种不同柔性吸附材料的吸附等温线、(平衡)相变条件、稳定性极限和自由能,这些材料可作为模型的不同输入而区分开来。虽然从几何角度来看,这项工作中使用的模型相对简单,但它们产生了不平凡的吸附行为,包括仅由于材料柔性导致的吸附 - 解吸滞后以及吸附剂的所谓“呼吸”。观察到的效应反过来可以与裸吸附剂的固有特性联系起来。其中一些效应基于物理原理是可以预期的,而其他效应则源于热力学和机械驱动力的微妙平衡。此外,这里提出的计算策略可以很容易地应用于更复杂的柔性吸附剂模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验