Suppr超能文献

一种G蛋白亚基易位嵌入网络基序是G蛋白偶联受体对钙振荡调节的基础。

A G-protein subunit translocation embedded network motif underlies GPCR regulation of calcium oscillations.

作者信息

Giri Lopamudra, Patel Anilkumar K, Karunarathne W K Ajith, Kalyanaraman Vani, Venkatesh K V, Gautam N

机构信息

Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri.

Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.

出版信息

Biophys J. 2014 Jul 1;107(1):242-54. doi: 10.1016/j.bpj.2014.05.020.

Abstract

G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gβγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gβγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.

摘要

G蛋白βγ亚基在受体激活时从质膜可逆地转运至内膜。转运速率因γ亚基类型而异。对于Gβγ转运速率差异在调节细胞信号转导动力学中的作用,人们了解有限。钙振荡网络结构的分岔分析预测,信号蛋白的转运速率可调节系统振荡的阻尼。在此,我们研究了Gβγ转运速率是否调节G蛋白偶联受体激活诱导的钙振荡。对表达不同转运速率γ亚基类型的HeLa细胞中的振荡进行成像和定量分析。结果表明,Gβγ转运速率差异可能是细胞间钙振荡阻尼特性多样性的基础。数学建模表明,一个嵌入转运的基序调节G蛋白介导的钙振荡的阻尼,这与实验数据一致。当前研究表明,这样一个基序可能作为一种调节机制,通过利用信号成分的细胞内转运来设计具有不同阻尼模式的振荡。

相似文献

2
G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):E3568-77. doi: 10.1073/pnas.1205345109. Epub 2012 Dec 3.
3
Gγ identity dictates efficacy of Gβγ signaling and macrophage migration.
J Biol Chem. 2018 Feb 23;293(8):2974-2989. doi: 10.1074/jbc.RA117.000872. Epub 2018 Jan 9.
4
All G protein βγ complexes are capable of translocation on receptor activation.
Biochem Biophys Res Commun. 2012 May 11;421(3):605-11. doi: 10.1016/j.bbrc.2012.04.054. Epub 2012 Apr 19.
5
A family of G protein βγ subunits translocate reversibly from the plasma membrane to endomembranes on receptor activation.
J Biol Chem. 2007 Aug 17;282(33):24099-108. doi: 10.1074/jbc.M701191200. Epub 2007 Jun 20.
6
G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.
Biochem Biophys Res Commun. 2018 Sep 3;503(1):165-170. doi: 10.1016/j.bbrc.2018.05.204. Epub 2018 Jun 11.
7
G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction.
Cell Signal. 2006 Oct;18(10):1758-68. doi: 10.1016/j.cellsig.2006.01.016. Epub 2006 Mar 6.
8
Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex.
J Biol Chem. 2004 Dec 3;279(49):51541-4. doi: 10.1074/jbc.M410639200. Epub 2004 Sep 23.
9
G protein gamma subunit, a hidden master regulator of GPCR signaling.
J Biol Chem. 2022 Dec;298(12):102618. doi: 10.1016/j.jbc.2022.102618. Epub 2022 Oct 19.
10
Regulation of G Protein βγ Signaling.
Int Rev Cell Mol Biol. 2018;339:133-191. doi: 10.1016/bs.ircmb.2018.02.008. Epub 2018 Mar 28.

引用本文的文献

1
Phytophthora zoospores display klinokinetic behaviour in response to a chemoattractant.
PLoS Pathog. 2024 Sep 30;20(9):e1012577. doi: 10.1371/journal.ppat.1012577. eCollection 2024 Sep.
2
Molecular regulation of PLCβ signaling.
Methods Enzymol. 2023;682:17-52. doi: 10.1016/bs.mie.2023.01.001. Epub 2023 Feb 22.
3
Live Cell Imaging and Optogenetics-Based Assays for GPCR Activity.
Methods Mol Biol. 2021;2268:207-221. doi: 10.1007/978-1-0716-1221-7_14.
4
Dissociation of the G protein βγ from the Gq-PLCβ complex partially attenuates PIP2 hydrolysis.
J Biol Chem. 2021 Jan-Jun;296:100702. doi: 10.1016/j.jbc.2021.100702. Epub 2021 Apr 24.
5
Subtype-dependent regulation of Gβγ signalling.
Cell Signal. 2021 Jun;82:109947. doi: 10.1016/j.cellsig.2021.109947. Epub 2021 Feb 11.
6
GPCR mediated control of calcium dynamics: A systems perspective.
Cell Signal. 2020 Oct;74:109717. doi: 10.1016/j.cellsig.2020.109717. Epub 2020 Jul 22.
7
Optical approaches for single-cell and subcellular analysis of GPCR-G protein signaling.
Anal Bioanal Chem. 2019 Jul;411(19):4481-4508. doi: 10.1007/s00216-019-01774-6. Epub 2019 Mar 30.
9
Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration.
J Biol Chem. 2017 Oct 20;292(42):17482-17495. doi: 10.1074/jbc.M117.787838. Epub 2017 Sep 1.
10
Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits.
Curr Opin Pharmacol. 2017 Feb;32:56-70. doi: 10.1016/j.coph.2016.11.001. Epub 2016 Nov 19.

本文引用的文献

1
Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1575-83. doi: 10.1073/pnas.1220755110. Epub 2013 Apr 8.
2
G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):E3568-77. doi: 10.1073/pnas.1205345109. Epub 2012 Dec 3.
3
All G protein βγ complexes are capable of translocation on receptor activation.
Biochem Biophys Res Commun. 2012 May 11;421(3):605-11. doi: 10.1016/j.bbrc.2012.04.054. Epub 2012 Apr 19.
4
The origin and evolution of G protein-coupled receptor kinases.
PLoS One. 2012;7(3):e33806. doi: 10.1371/journal.pone.0033806. Epub 2012 Mar 19.
5
Diverse sensitivity thresholds in dynamic signaling responses by social amoebae.
Sci Signal. 2012 Feb 28;5(213):ra17. doi: 10.1126/scisignal.2002449.
7
Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane.
FASEB J. 2011 Sep;25(9):2883-97. doi: 10.1096/fj.11-181537. Epub 2011 May 20.
8
Calcium oscillations.
Cold Spring Harb Perspect Biol. 2011 Mar 1;3(3):a004226. doi: 10.1101/cshperspect.a004226.
9
Modeling the cell cycle: why do certain circuits oscillate?
Cell. 2011 Mar 18;144(6):874-85. doi: 10.1016/j.cell.2011.03.006.
10
Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit.
Cell Signal. 2011 May;23(5):785-93. doi: 10.1016/j.cellsig.2011.01.001. Epub 2011 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验