Giri Lopamudra, Patel Anilkumar K, Karunarathne W K Ajith, Kalyanaraman Vani, Venkatesh K V, Gautam N
Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri.
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.
Biophys J. 2014 Jul 1;107(1):242-54. doi: 10.1016/j.bpj.2014.05.020.
G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gβγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gβγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.
G蛋白βγ亚基在受体激活时从质膜可逆地转运至内膜。转运速率因γ亚基类型而异。对于Gβγ转运速率差异在调节细胞信号转导动力学中的作用,人们了解有限。钙振荡网络结构的分岔分析预测,信号蛋白的转运速率可调节系统振荡的阻尼。在此,我们研究了Gβγ转运速率是否调节G蛋白偶联受体激活诱导的钙振荡。对表达不同转运速率γ亚基类型的HeLa细胞中的振荡进行成像和定量分析。结果表明,Gβγ转运速率差异可能是细胞间钙振荡阻尼特性多样性的基础。数学建模表明,一个嵌入转运的基序调节G蛋白介导的钙振荡的阻尼,这与实验数据一致。当前研究表明,这样一个基序可能作为一种调节机制,通过利用信号成分的细胞内转运来设计具有不同阻尼模式的振荡。