Suppr超能文献

基于距离成像的呼吸肺运动估计模拟。噪声、信号维度和采样模式的影响。

Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

作者信息

Wilms M, Werner R, Blendowski M, Ortmüller J, Handels H

机构信息

Matthias Wilms, Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany, E-mail:

出版信息

Methods Inf Med. 2014;53(4):257-63. doi: 10.3414/ME13-01-0137. Epub 2014 Jul 4.

Abstract

OBJECTIVES

A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions).

METHODS

A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented.

RESULTS

This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines.

CONCLUSIONS

Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

摘要

目的

与胸腹部肿瘤放疗相关的一个主要问题是呼吸运动。在临床实践中,运动补偿方法通常由低维呼吸信号(如肺活量测定)和患者特异性对应模型引导,这些模型用于在给定信号测量值的情况下估计所需的内部运动。最近,有人提出使用从移动皮肤表面的距离图像中获取的多维信号,以更好地考虑复杂的运动模式。在这项工作中,进行了一项模拟研究,以研究此类多维信号的运动估计精度以及噪声、信号维度和不同采样模式(点、线、区域)的影响。

方法

采用一种微分同胚对应建模框架,将从模拟距离图像中获取的多维呼吸信号与由微分同胚非线性变换表示的内部运动模式相关联。此外,还提出了一种在此框架内自动选择最佳信号组合/模式的方法。

结果

这项模拟研究聚焦于肺部运动估计,基于28个四维CT数据集。结果表明,使用多维信号而非一维信号可显著提高运动估计精度,然而,这受到噪声的高度影响。不同的多维采样模式(线和区域)之间仅存在微小差异。与使用所有点或线获得的结果相比,自动确定的点和线的最佳组合并未提高精度。

结论

我们的结果显示了从距离图像中获取的多维呼吸信号在基于模型的放射治疗呼吸运动估计中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验