Suppr超能文献

耦合社交网络中的信息过滤

Information filtering on coupled social networks.

作者信息

Nie Da-Cheng, Zhang Zi-Ke, Zhou Jun-Lin, Fu Yan, Zhang Kui

机构信息

Web Sciences Center, School of Computer Science & Engineering, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.

College of Communication Engineering, Chongqing University, Chongqing, People's Republic of China; Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China; Alibaba Research Institute, Hangzhou, People's Republic of China.

出版信息

PLoS One. 2014 Jul 8;9(7):e101675. doi: 10.1371/journal.pone.0101675. eCollection 2014.

Abstract

In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks.

摘要

在本文中,基于耦合社会网络(CSN),我们提出了一种混合算法,用于非线性地整合在线用户的社交和行为信息。基于耦合社会网络的过滤算法考虑了社会相似性和个性化偏好的影响。基于两个真实数据集Epinions和Friendfeed的实验结果表明,混合模式不仅可以提供更准确的推荐,而且在采用全局度量时还能扩大推荐覆盖范围。进一步的实证分析表明,在耦合社会网络中也可以发现相互强化和富俱乐部现象,其中相同的个体占据在线系统的核心位置。这项工作可能有助于深入理解耦合社会网络的结构和功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e05b/4086959/2a7601c824b6/pone.0101675.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验