Suppr超能文献

悬停的红玉喉北蜂鸟的三维流动与升力特性

Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.

作者信息

Song Jialei, Luo Haoxiang, Hedrick Tyson L

机构信息

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA

出版信息

J R Soc Interface. 2014 Sep 6;11(98):20140541. doi: 10.1098/rsif.2014.0541.

Abstract

A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing-wake interaction also contribute significantly to the lift asymmetry. Though the wing-wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing-wing interaction and wing-body interaction are small.

摘要

对一只红喉北蜂鸟(Archilochus colubris)的悬停飞行进行了三维计算流体动力学模拟。通过从该鸟类的高速成像数据重建翅膀运动,在数值模型中采用了逼真的翅膀运动学。在模拟中捕捉到了整个冲程周期内翅膀周围的升力历史和三维流动模式。在一个冲程周期内观察到升力产生存在显著的不对称性。特别是,下拍产生的垂直力约为上拍的2.5倍,这一结果证实了基于先前实验研究中对环量测量的估计。与升力产生相关的是两个半冲程之间类似的功率不平衡。进一步分析表明,除了攻角、翅膀速度和表面积外,基于阻力的力和翅膀与尾流的相互作用也对升力不对称有显著贡献。尽管翅膀与尾流的相互作用可能有利于升力增强,但孤立冲程模拟表明,这种益处被其他相反的效应掩盖了,如下洗的存在。前缘涡在下拍期间是稳定的,但在上拍期间可能脱落。最后,全身模拟结果表明,翅膀与翅膀相互作用和翅膀与身体相互作用的影响较小。

相似文献

1
Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.
J R Soc Interface. 2014 Sep 6;11(98):20140541. doi: 10.1098/rsif.2014.0541.
4
Lift production in the hovering hummingbird.
Proc Biol Sci. 2009 Nov 7;276(1674):3747-52. doi: 10.1098/rspb.2009.1003. Epub 2009 Aug 5.
5
Wing-pitching mechanism of hovering Ruby-throated hummingbirds.
Bioinspir Biomim. 2015 Jan 19;10(1):016007. doi: 10.1088/1748-3190/10/1/016007.
7
Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna).
Proc Biol Sci. 2013 Oct 30;280(1773):20132391. doi: 10.1098/rspb.2013.2391. Print 2013 Dec 22.
9
Computational investigation of cicada aerodynamics in forward flight.
J R Soc Interface. 2015 Jan 6;12(102):20141116. doi: 10.1098/rsif.2014.1116.
10
Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
J Exp Biol. 2008 Jan;211(Pt 2):239-57. doi: 10.1242/jeb.008649.

引用本文的文献

1
Strength of parrot flight feathers is a function of position on the wing.
Curr Zool. 2024 Aug 7;71(2):212-222. doi: 10.1093/cz/zoae041. eCollection 2025 Apr.
2
Efficiency and control trade-offs and work loop characteristics of flapping-wing systems with synchronous and asynchronous muscles.
J R Soc Interface. 2025 Mar;22(224):20240660. doi: 10.1098/rsif.2024.0660. Epub 2025 Mar 19.
3
The spatiotemporal richness of hummingbird wing deformations.
J Exp Biol. 2024 May 15;227(10). doi: 10.1242/jeb.246223. Epub 2024 May 21.
4
Origin and evolution of immersed boundary methods in computational fluid dynamics.
Phys Rev Fluids. 2023 Oct;8(10). doi: 10.1103/physrevfluids.8.100501. Epub 2023 Oct 6.
5
Hummingbirds use wing inertial effects to improve manoeuvrability.
J R Soc Interface. 2023 Oct;20(207):20230229. doi: 10.1098/rsif.2023.0229. Epub 2023 Oct 4.
6
Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping.
Biomimetics (Basel). 2023 May 23;8(2):216. doi: 10.3390/biomimetics8020216.
7
Musculoskeletal wing-actuation model of hummingbirds predicts diverse effects of primary flight muscles in hovering flight.
Proc Biol Sci. 2022 Dec 14;289(1988):20222076. doi: 10.1098/rspb.2022.2076. Epub 2022 Dec 7.
8
Wing Kinematics and Unsteady Aerodynamics of a Hummingbird Pure Yawing Maneuver.
Biomimetics (Basel). 2022 Aug 19;7(3):115. doi: 10.3390/biomimetics7030115.
9
State-space aerodynamic model reveals high force control authority and predictability in flapping flight.
J R Soc Interface. 2021 Aug;18(181):20210222. doi: 10.1098/rsif.2021.0222. Epub 2021 Aug 4.
10
Birds repurpose the role of drag and lift to take off and land.
Nat Commun. 2019 Nov 25;10(1):5354. doi: 10.1038/s41467-019-13347-3.

本文引用的文献

1
Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna).
Proc Biol Sci. 2013 Oct 30;280(1773):20132391. doi: 10.1098/rspb.2013.2391. Print 2013 Dec 22.
2
A comparative study of the hovering efficiency of flapping and revolving wings.
Bioinspir Biomim. 2013 Sep;8(3):036001. doi: 10.1088/1748-3182/8/3/036001. Epub 2013 May 17.
3
Analysis of the transitional flow field over a fixed hummingbird wing.
J Exp Biol. 2013 Jan 15;216(Pt 2):303-18. doi: 10.1242/jeb.075341. Epub 2012 Sep 20.
4
Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio.
Proc Biol Sci. 2012 May 22;279(1735):1986-92. doi: 10.1098/rspb.2011.2238. Epub 2011 Dec 14.
5
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Science. 2009 Sep 18;325(5947):1549-52. doi: 10.1126/science.1175928.
6
Lift production in the hovering hummingbird.
Proc Biol Sci. 2009 Nov 7;276(1674):3747-52. doi: 10.1098/rspb.2009.1003. Epub 2009 Aug 5.
7
Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems.
Bioinspir Biomim. 2008 Sep;3(3):034001. doi: 10.1088/1748-3182/3/3/034001. Epub 2008 Jul 1.
8
Three-dimensional kinematics of hummingbird flight.
J Exp Biol. 2007 Jul;210(Pt 13):2368-82. doi: 10.1242/jeb.005686.
9
Aerodynamics of the hovering hummingbird.
Nature. 2005 Jun 23;435(7045):1094-7. doi: 10.1038/nature03647.
10
Resolution of a paradox: hummingbird flight at high elevation does not come without a cost.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17731-6. doi: 10.1073/pnas.0405260101. Epub 2004 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验