Suppr超能文献

大鼠孤束核尾部胰高血糖素样肽1神经元的谷氨酸能表型

Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats.

作者信息

Zheng H, Stornetta R L, Agassandian K, Rinaman Linda

机构信息

Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA, 15260, USA.

出版信息

Brain Struct Funct. 2015 Sep;220(5):3011-22. doi: 10.1007/s00429-014-0841-6. Epub 2014 Jul 11.

Abstract

The expression of a vesicular glutamate transporter (VGLUT) suffices to assign a glutamatergic phenotype to neurons and other secretory cells. For example, intestinal L cells express VGLUT2 and secrete glutamate along with glucagon-like peptide 1 (GLP1). We hypothesized that GLP1-positive neurons within the caudal (visceral) nucleus of the solitary tract (cNST) also are glutamatergic. To test this, the axonal projections of GLP1 and other neurons within the cNST were labeled in rats via iontophoretic delivery of anterograde tracer. Dual immunofluorescence and confocal microscopy was used to visualize tracer-, GLP1-, and VGLUT2-positive fibers within brainstem, hypothalamic, and limbic forebrain nuclei that receive input from the cNST. Electron microscopy was used to confirm GLP1 and VGLUT2 immunolabeling within the same axon varicosities, and fluorescent in situ hybridization was used to examine VGLUT2 mRNA expression by GLP1-positive neurons. Most anterograde tracer-labeled fibers displayed VGLUT2-positive varicosities, providing new evidence that ascending axonal projections from the cNST are primarily glutamatergic. Virtually all GLP1-positive varicosities also were VGLUT2-positive. Electron microscopy confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites in the hypothalamus. Finally, in situ hybridization confirmed that GLP1-positive cNST neurons express VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store glutamate in synaptic vesicles, and likely co-release both glutamate and GLP1 from axon varicosities and terminals in the hypothalamus and other brain regions.

摘要

囊泡谷氨酸转运体(VGLUT)的表达足以赋予神经元和其他分泌细胞谷氨酸能表型。例如,肠道L细胞表达VGLUT2,并与胰高血糖素样肽1(GLP1)一起分泌谷氨酸。我们推测,孤束尾侧(内脏)核(cNST)内的GLP1阳性神经元也是谷氨酸能的。为了验证这一点,通过离子电泳法向大鼠体内注入顺行示踪剂,标记cNST内GLP1和其他神经元的轴突投射。采用双重免疫荧光和共聚焦显微镜观察接受cNST输入的脑干、下丘脑和边缘前脑核内的示踪剂、GLP1和VGLUT2阳性纤维。利用电子显微镜确认同一轴突膨体内GLP1和VGLUT2的免疫标记,并采用荧光原位杂交检测GLP1阳性神经元的VGLUT2 mRNA表达。大多数顺行示踪剂标记的纤维显示VGLUT2阳性膨体,这为cNST的上行轴突投射主要是谷氨酸能提供了新证据。几乎所有GLP1阳性膨体也都是VGLUT2阳性。电子显微镜证实了下丘脑内与未标记树突形成不对称(兴奋性)突触的轴突终末中GLP1和VGLUT2免疫标记的共定位。最后,原位杂交证实GLP1阳性的cNST神经元表达VGLUT2 mRNA。因此,大鼠后脑的GLP1神经元能够将谷氨酸储存于突触小泡中,并可能从下丘脑和其他脑区的轴突膨体和终末共同释放谷氨酸和GLP1。

相似文献

1
Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats.
Brain Struct Funct. 2015 Sep;220(5):3011-22. doi: 10.1007/s00429-014-0841-6. Epub 2014 Jul 11.
3
Glutamatergic innervation of the hypothalamic median eminence and posterior pituitary of the rat.
Neuroscience. 2007 Feb 23;144(4):1383-92. doi: 10.1016/j.neuroscience.2006.10.053. Epub 2006 Dec 18.
4
Enhanced glutamatergic phenotype of mesencephalic dopamine neurons after neonatal 6-hydroxydopamine lesion.
Neuroscience. 2008 Sep 22;156(1):59-70. doi: 10.1016/j.neuroscience.2008.07.032. Epub 2008 Jul 25.
5
Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus.
J Comp Neurol. 2012 Aug 1;520(11):2369-94. doi: 10.1002/cne.23043.
9
Distribution of vesicular glutamate transporter mRNA in rat hypothalamus.
J Comp Neurol. 2002 Jul 1;448(3):217-29. doi: 10.1002/cne.10257.

引用本文的文献

2
An endogenous GLP-1 circuit engages VTA GABA neurons to regulate mesolimbic dopamine neurons and attenuate cocaine seeking.
Sci Adv. 2025 Feb 28;11(9):eadr5051. doi: 10.1126/sciadv.adr5051. Epub 2025 Feb 26.
3
Glucagon-Like Peptide-1 Links Ingestion, Homeostasis, and the Heart.
Compr Physiol. 2025 Feb;15(1):e7. doi: 10.1002/cph4.7.
4
Molecular Ontology of the Nucleus of Solitary Tract.
J Comp Neurol. 2024 Dec;532(12):e70004. doi: 10.1002/cne.70004.
6
Topography of the GLP-1/GLP-1 receptor system in the spinal cord of male mice.
Sci Rep. 2024 Jun 22;14(1):14403. doi: 10.1038/s41598-024-65442-1.
8
A brainstem to hypothalamic arcuate nucleus GABAergic circuit drives feeding.
Curr Biol. 2024 Apr 22;34(8):1646-1656.e4. doi: 10.1016/j.cub.2024.02.074. Epub 2024 Mar 21.
9
Sex-divergent effects of hindbrain GLP-1-producing neuron activation in rats.
Front Neurosci. 2023 Oct 23;17:1265080. doi: 10.3389/fnins.2023.1265080. eCollection 2023.
10
Signaling pathways in obesity: mechanisms and therapeutic interventions.
Signal Transduct Target Ther. 2022 Aug 28;7(1):298. doi: 10.1038/s41392-022-01149-x.

本文引用的文献

1
Distribution of glucagon-like peptide 1-immunopositive neurons in human caudal medulla.
Brain Struct Funct. 2015 Mar;220(2):1213-9. doi: 10.1007/s00429-014-0714-z. Epub 2014 Feb 9.
2
The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors.
Am J Physiol Endocrinol Metab. 2013 Dec 1;305(11):E1367-74. doi: 10.1152/ajpendo.00413.2013. Epub 2013 Oct 8.
6
Glutamate and GABA as rapid effectors of hypothalamic "peptidergic" neurons.
Front Behav Neurosci. 2012 Nov 26;6:81. doi: 10.3389/fnbeh.2012.00081. eCollection 2012.
7
Neuronal and intracellular signaling pathways mediating GLP-1 energy balance and glycemic effects.
Physiol Behav. 2012 Jun 6;106(3):413-6. doi: 10.1016/j.physbeh.2012.02.017. Epub 2012 Feb 17.
8
Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus.
J Comp Neurol. 2012 Aug 1;520(11):2369-94. doi: 10.1002/cne.23043.
9
The brainstem preproglucagon system in a non-human primate (Macaca mulatta).
Brain Res. 2011 Jun 23;1397:28-37. doi: 10.1016/j.brainres.2011.05.002. Epub 2011 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验