Zhou Guang-Quan, Pang Zhi-Hui, Chen Qin-Qun, He Wei, Chen Zhen-Qiu, Chen Lei-Lei, Li Zi-Qi
The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, PR China; Department of Digital Orthopaedic and Biomechanics, Laboratory of National Key Discipline Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
Comput Biol Med. 2014 Sep;52:96-101. doi: 10.1016/j.compbiomed.2014.04.002. Epub 2014 May 14.
According to Wolff׳s law, the structure and function of bone are interdependent. The disruption of trabeculae in the necrotic femoral head destroys the biomechanical transfer path, increasing the risk of a collapse in the cortical bone. Hence, biomaterials are needed to promote osteogenesis to aid in the reconstruction of a similar biomechanical transfer path that can provide structural and biomechanical support to prevent and delay bone deterioration. Fibular allograft combined with impaction bone grafting (FAIBG) is a hip preservation method that provides both biological repair materials and biomechanical support. This method has been used successfully in the clinical setting, but it still lacks biomechanical insight. In this paper, we aim to provide a biomechanical basis for treatment using FAIBG, we used subject-specific finite element (FE) methods to analyse the biomechanical transfer characteristics of hip models: physiological, pathological and postoperative. The physiological model provided insight into the biomechanical transfer characteristics of the proximal femur. The pathological model showed an abnormal stress distribution that destroyed stress transfer capability. The postoperative model showed that FAIBG can reconstruct the biomechanical transfer path of the femoral head and reduce the risk of a collapse in the cortical bone. In conclusion, FAIBG seems to treat necrosis of the femoral head.
根据沃尔夫定律,骨骼的结构和功能相互依存。坏死股骨头内小梁的破坏会破坏生物力学传递路径,增加皮质骨塌陷的风险。因此,需要生物材料来促进成骨,以帮助重建类似的生物力学传递路径,该路径可以提供结构和生物力学支持,以预防和延缓骨质恶化。腓骨移植联合打压植骨(FAIBG)是一种保留髋关节的方法,它既能提供生物修复材料,又能提供生物力学支持。这种方法已在临床中成功应用,但仍缺乏生物力学方面的深入了解。在本文中,我们旨在为使用FAIBG进行治疗提供生物力学依据,我们采用特定个体有限元(FE)方法分析髋关节模型(生理、病理和术后)的生物力学传递特征。生理模型揭示了股骨近端的生物力学传递特征。病理模型显示应力分布异常,破坏了应力传递能力。术后模型表明,FAIBG可以重建股骨头的生物力学传递路径,并降低皮质骨塌陷的风险。总之,FAIBG似乎可以治疗股骨头坏死。