Suppr超能文献

融合柄的扩展及其对生物膜融合的意义。

Expansion of the fusion stalk and its implication for biological membrane fusion.

作者信息

Risselada Herre Jelger, Bubnis Gregory, Grubmüller Helmut

机构信息

Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; andLeibniz Institute of Surface Modification, D-04318 Leipzig, Germany

Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and.

出版信息

Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11043-8. doi: 10.1073/pnas.1323221111. Epub 2014 Jul 14.

Abstract

Over the past 20 years, it has been widely accepted that membrane fusion proceeds via a hemifusion step before opening of the productive fusion pore. An initial hourglass-shaped lipid structure, the fusion stalk, is formed between the adjacent membrane leaflets (cis leaflets). It remains controversial if and how fusion proteins drive the subsequent transition (expansion) of the stalk into a fusion pore. Here, we propose a comprehensive and consistent thermodynamic understanding in terms of the underlying free-energy landscape of stalk expansion. We illustrate how the underlying free energy landscape of stalk expansion and the concomitant pathway is altered by subtle differences in membrane environment, such as leaflet composition, asymmetry, and flexibility. Nonleaky stalk expansion (stalk widening) requires the formation of a critical trans-leaflet contact. The fusion machinery can mechanically enforce trans-leaflet contact formation either by directly enforcing the trans-leaflets in close proximity, or by (electrostatically) condensing the area of the cis leaflets. The rate of these fast fusion reactions may not be primarily limited by the energetics but by the forces that the fusion proteins are able to exert.

摘要

在过去20年里,人们普遍认为膜融合在形成有功能的融合孔之前会经过一个半融合步骤。最初会在相邻的膜小叶(顺式小叶)之间形成一个沙漏状的脂质结构,即融合柄。融合蛋白是否以及如何驱动融合柄随后转变(扩张)为融合孔仍存在争议。在此,我们基于融合柄扩张潜在的自由能态势,提出了一种全面且一致的热力学理解。我们阐述了膜环境中的细微差异,如小叶组成、不对称性和柔韧性,是如何改变融合柄扩张的潜在自由能态势及相应途径的。无泄漏的融合柄扩张(柄变宽)需要形成关键的反式小叶接触。融合机制可以通过直接使反式小叶紧密靠近,或者通过(静电)压缩顺式小叶的面积,来机械地促使反式小叶接触的形成。这些快速融合反应的速率可能主要不受能量学限制,而是受融合蛋白能够施加的力的限制。

相似文献

1
Expansion of the fusion stalk and its implication for biological membrane fusion.
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11043-8. doi: 10.1073/pnas.1323221111. Epub 2014 Jul 14.
2
Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.
Biophys J. 2016 Mar 8;110(5):1110-24. doi: 10.1016/j.bpj.2016.01.013.
3
Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition.
EMBO Rep. 2016 Nov;17(11):1590-1608. doi: 10.15252/embr.201642209. Epub 2016 Sep 19.
4
Effect of membrane curvature-modifying lipids on membrane fusion by tick-borne encephalitis virus.
J Virol. 2004 Aug;78(16):8536-42. doi: 10.1128/JVI.78.16.8536-8542.2004.
5
A quantitative model for membrane fusion based on low-energy intermediates.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7235-40. doi: 10.1073/pnas.121191898. Epub 2001 Jun 12.
6
The mechanisms of lipid-protein rearrangements during viral infection.
Bioelectrochemistry. 2004 Jun;63(1-2):129-36. doi: 10.1016/j.bioelechem.2003.10.016.
8
Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm.
Biophys J. 2002 Nov;83(5):2634-51. doi: 10.1016/S0006-3495(02)75274-0.
9
10
Initiation and dynamics of hemifusion in lipid bilayers.
Biophys J. 2003 Jul;85(1):381-9. doi: 10.1016/S0006-3495(03)74482-8.

引用本文的文献

1
Hemifusomes and interacting proteolipid nanodroplets mediate multi-vesicular body formation.
Nat Commun. 2025 May 17;16(1):4609. doi: 10.1038/s41467-025-59887-9.
2
Hemifusomes and Interacting Proteolipid Nanodroplets Mediate Multi-Vesicular Body Formation.
Res Sq. 2024 Oct 21:rs.3.rs-5200876. doi: 10.21203/rs.3.rs-5200876/v1.
3
The diffuse interface description of fluid lipid membranes captures key features of the hemifusion pathway and lateral stress profile.
PNAS Nexus. 2024 Jul 25;3(8):pgae300. doi: 10.1093/pnasnexus/pgae300. eCollection 2024 Aug.
4
Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography.
Trends Biochem Sci. 2024 Oct;49(10):916-931. doi: 10.1016/j.tibs.2024.06.012. Epub 2024 Jul 24.
5
Transient pores in hemifusion diaphragms.
Biophys J. 2024 Aug 20;123(16):2455-2475. doi: 10.1016/j.bpj.2024.06.009. Epub 2024 Jun 11.
6
Vesicle fusion and release in neurons under dynamic mechanical equilibrium.
iScience. 2024 Apr 19;27(5):109793. doi: 10.1016/j.isci.2024.109793. eCollection 2024 May 17.
7
Nanoparticle induced fusion of lipid membranes.
Nanoscale. 2024 May 30;16(21):10221-10229. doi: 10.1039/d4nr00591k.
8
Mechanisms of SNARE proteins in membrane fusion.
Nat Rev Mol Cell Biol. 2024 Feb;25(2):101-118. doi: 10.1038/s41580-023-00668-x. Epub 2023 Oct 17.
9
Nanoparticle-induced biomembrane fusion: unraveling the effect of core size on stalk formation.
Nanoscale Adv. 2023 Aug 16;5(18):4675-4680. doi: 10.1039/d3na00430a. eCollection 2023 Sep 12.
10
SNARE Proteins in Synaptic Vesicle Fusion.
Adv Neurobiol. 2023;33:63-118. doi: 10.1007/978-3-031-34229-5_4.

本文引用的文献

1
Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release.
Neuron. 2013 Oct 16;80(2):470-83. doi: 10.1016/j.neuron.2013.09.010. Epub 2013 Oct 10.
3
6
Single reconstituted neuronal SNARE complexes zipper in three distinct stages.
Science. 2012 Sep 14;337(6100):1340-3. doi: 10.1126/science.1224492. Epub 2012 Aug 16.
7
Line-tension controlled mechanism for influenza fusion.
PLoS One. 2012;7(6):e38302. doi: 10.1371/journal.pone.0038302. Epub 2012 Jun 28.
8
The hemifused state on the pathway to membrane fusion.
Phys Rev Lett. 2012 Apr 27;108(17):178101. doi: 10.1103/PhysRevLett.108.178101. Epub 2012 Apr 23.
9
Membrane fusion intermediates via directional and full assembly of the SNARE complex.
Science. 2012 Jun 22;336(6088):1581-4. doi: 10.1126/science.1221976. Epub 2012 May 31.
10
Energetics of stalk intermediates in membrane fusion are controlled by lipid composition.
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):E1609-18. doi: 10.1073/pnas.1119442109. Epub 2012 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验