Suppr超能文献

国际基础与临床药理学联合会。XC。多位点药理学:受体变构作用及变构配体命名法建议。

International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands.

作者信息

Christopoulos Arthur, Changeux Jean-Pierre, Catterall William A, Fabbro Doriano, Burris Thomas P, Cidlowski John A, Olsen Richard W, Peters John A, Neubig Richard R, Pin Jean-Philippe, Sexton Patrick M, Kenakin Terry P, Ehlert Frederick J, Spedding Michael, Langmead Christopher J

机构信息

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.).

出版信息

Pharmacol Rev. 2014 Oct;66(4):918-47. doi: 10.1124/pr.114.008862.

Abstract

Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.

摘要

变构相互作用在代谢过程和信号转导中起着至关重要的作用,最近,由于发现更多靶点选择性化学探针和治疗药物的潜力,变构相互作用已成为众多药理学研究的焦点。除了早期对酶的经典研究外,现在还有针对基因组编码的所有受体超家族的小分子变构调节剂实例,包括配体门控和电压门控离子通道、G蛋白偶联受体、核激素受体和受体酪氨酸激酶。因此,大量的药理行为被归因于变构配体,这些行为可能因靶点、配体以及细胞/组织的不同而有所差异。本文概述了应用于受体家族的变构现象以及检测和验证变构相互作用的方法,并对变构配体的命名及其性质提出了建议。

相似文献

2
Allosteric targeting of receptor tyrosine kinases.
Nat Biotechnol. 2014 Nov;32(11):1113-20. doi: 10.1038/nbt.3028.
3
Allosteric modulation as a unifying mechanism for receptor function and regulation.
Diabetes Obes Metab. 2017 Sep;19 Suppl 1:4-21. doi: 10.1111/dom.12959.
4
Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation.
Cell. 2016 Aug 25;166(5):1084-1102. doi: 10.1016/j.cell.2016.08.015.
5
Allosteric small molecule modulators of nuclear receptors.
Mol Cell Endocrinol. 2019 Apr 5;485:20-34. doi: 10.1016/j.mce.2019.01.022. Epub 2019 Jan 28.
6
Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target.
Expert Opin Drug Discov. 2016 Dec;11(12):1223-1237. doi: 10.1080/17460441.2016.1245289. Epub 2016 Oct 21.
7
Allosteric Modulators of the Class A G Protein Coupled Receptors.
Adv Exp Med Biol. 2016;917:185-207. doi: 10.1007/978-3-319-32805-8_9.
9
Allosteric modulation of G protein-coupled receptors.
Curr Pharm Des. 2004;10(17):2003-13. doi: 10.2174/1381612043384303.
10
Strategies for the identification of allosteric modulators of G-protein-coupled receptors.
Biochem Pharmacol. 2011 Mar 15;81(6):691-702. doi: 10.1016/j.bcp.2010.12.012. Epub 2010 Dec 22.

引用本文的文献

2
Identification of a Lipid-Exposed Extrahelical Binding Site for Positive Allosteric Modulators of the Dopamine D Receptor.
ACS Chem Neurosci. 2025 Jun 18;16(12):2295-2311. doi: 10.1021/acschemneuro.5c00105. Epub 2025 May 15.
3
Intracellular GPCR modulators enable precision pharmacology.
NPJ Drug Discov. 2025;2(1):8. doi: 10.1038/s44386-025-00011-8. Epub 2025 May 12.
4
GPCR drug discovery: new agents, targets and indications.
Nat Rev Drug Discov. 2025 Mar 3. doi: 10.1038/s41573-025-01139-y.
5
Molecular Glues: A New Approach to Modulating GPCR Signaling Bias.
Biochemistry. 2025 Feb 18;64(4):749-759. doi: 10.1021/acs.biochem.4c00734. Epub 2025 Feb 3.
6
Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery.
Nat Rev Drug Discov. 2025 Apr;24(4):251-275. doi: 10.1038/s41573-024-01083-3. Epub 2025 Jan 2.
7
Discovery of potent allosteric antibodies inhibiting EGFR.
MAbs. 2024 Jan-Dec;16(1):2406548. doi: 10.1080/19420862.2024.2406548. Epub 2024 Sep 20.
8
The value of protein allostery in rational anticancer drug design: an update.
Expert Opin Drug Discov. 2024 Sep;19(9):1071-1085. doi: 10.1080/17460441.2024.2384467. Epub 2024 Jul 28.
9
[Not Available].
Acta Pharm Sin B. 2024 Jan;14(1):67-86. doi: 10.1016/j.apsb.2023.07.020. Epub 2023 Jul 21.
10
Glycine: The Smallest Anti-Inflammatory Micronutrient.
Int J Mol Sci. 2023 Jul 8;24(14):11236. doi: 10.3390/ijms241411236.

本文引用的文献

1
An alternate binding site for PPARγ ligands.
Nat Commun. 2014 Apr 7;5:3571. doi: 10.1038/ncomms4571.
2
Functional and structural perspectives on allosteric modulation of GPCRs.
Curr Opin Cell Biol. 2014 Apr;27:94-101. doi: 10.1016/j.ceb.2013.11.007. Epub 2013 Dec 22.
3
Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator.
Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.
4
REV-ERB and ROR nuclear receptors as drug targets.
Nat Rev Drug Discov. 2014 Mar;13(3):197-216. doi: 10.1038/nrd4100.
5
Structure of the retinoid X receptor α-liver X receptor β (RXRα-LXRβ) heterodimer on DNA.
Nat Struct Mol Biol. 2014 Mar;21(3):277-81. doi: 10.1038/nsmb.2778. Epub 2014 Feb 23.
6
Molecular control of δ-opioid receptor signalling.
Nature. 2014 Feb 13;506(7487):191-6. doi: 10.1038/nature12944. Epub 2014 Jan 12.
7
Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):966-71. doi: 10.1073/pnas.1314997111. Epub 2013 Dec 23.
8
Photoaffinity labeling the propofol binding site in GLIC.
Biochemistry. 2014 Jan 14;53(1):135-42. doi: 10.1021/bi401492k. Epub 2013 Dec 30.
9
TRPV1 structures in distinct conformations reveal activation mechanisms.
Nature. 2013 Dec 5;504(7478):113-8. doi: 10.1038/nature12823.
10
Structure of the TRPV1 ion channel determined by electron cryo-microscopy.
Nature. 2013 Dec 5;504(7478):107-12. doi: 10.1038/nature12822.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验