From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, and the Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom.
the Bioinformatics and Computational Biosciences Branch, NIAID, National Institutes of Health, Bethesda, Maryland 20892.
J Biol Chem. 2014 Sep 5;289(36):25041-53. doi: 10.1074/jbc.M114.581579. Epub 2014 Jul 14.
The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro(216)-Phe(228) loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors.
抗原 85 的三种同工型(A、B 和 C)是最丰富的分泌分枝杆菌蛋白,催化转酯化反应,合成分枝杆菌细胞壁最外层的重要成分——阿拉伯甘露聚糖(mycolated arabinogalactan)、单脂化海藻糖(trehalose monomycolate,TMM)和双脂化海藻糖(trehalose dimycolate,TDM)。这三种酶在活性位点上几乎完全相同,因此被认为是为了逃避宿主免疫而存在的。在活性位点的远端是第二个假定的低同源性碳水化合物结合位点。在这个第二位点对三种同工型进行突变,既影响了体外的底物选择性,又影响了整体催化活性。使用合成和天然底物,我们表明这三种酶具有独特的选择性;抗原 85A 更有效地将 TMM 酰化形成 TDM,而 C(B 则稍差)使用游离海藻糖形成 TMM 的速率更高。这种底物选择性的差异延伸到细胞壁阿拉伯聚糖的六糖片段。将最活跃同工型(C)的第二部位残基突变为 A 或 B 中的残基,部分改变了这种底物选择性。这些实验与分子动力学模拟相结合,揭示了 N 端α9 螺旋、相邻的 Pro(216)-Phe(228)环和α5 螺旋的差异是导致活性和底物选择性变化的可能原因。这些差异解释了三种同工型的存在,并将为开发抑制剂的未来工作提供依据。