Suppr超能文献

结核分枝杆菌抗原 85 的三种同型异构体具有独特的底物和活性,这些活性由非活性位点区域决定。

The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.

机构信息

From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, and the Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom.

the Bioinformatics and Computational Biosciences Branch, NIAID, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

J Biol Chem. 2014 Sep 5;289(36):25041-53. doi: 10.1074/jbc.M114.581579. Epub 2014 Jul 14.

Abstract

The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro(216)-Phe(228) loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors.

摘要

抗原 85 的三种同工型(A、B 和 C)是最丰富的分泌分枝杆菌蛋白,催化转酯化反应,合成分枝杆菌细胞壁最外层的重要成分——阿拉伯甘露聚糖(mycolated arabinogalactan)、单脂化海藻糖(trehalose monomycolate,TMM)和双脂化海藻糖(trehalose dimycolate,TDM)。这三种酶在活性位点上几乎完全相同,因此被认为是为了逃避宿主免疫而存在的。在活性位点的远端是第二个假定的低同源性碳水化合物结合位点。在这个第二位点对三种同工型进行突变,既影响了体外的底物选择性,又影响了整体催化活性。使用合成和天然底物,我们表明这三种酶具有独特的选择性;抗原 85A 更有效地将 TMM 酰化形成 TDM,而 C(B 则稍差)使用游离海藻糖形成 TMM 的速率更高。这种底物选择性的差异延伸到细胞壁阿拉伯聚糖的六糖片段。将最活跃同工型(C)的第二部位残基突变为 A 或 B 中的残基,部分改变了这种底物选择性。这些实验与分子动力学模拟相结合,揭示了 N 端α9 螺旋、相邻的 Pro(216)-Phe(228)环和α5 螺旋的差异是导致活性和底物选择性变化的可能原因。这些差异解释了三种同工型的存在,并将为开发抑制剂的未来工作提供依据。

相似文献

1
The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.
J Biol Chem. 2014 Sep 5;289(36):25041-53. doi: 10.1074/jbc.M114.581579. Epub 2014 Jul 14.
2
Mycolyltransferase from in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis.
J Biol Chem. 2018 Mar 9;293(10):3651-3662. doi: 10.1074/jbc.RA117.001681. Epub 2018 Jan 19.
7
Mycobacterium tuberculosis antigen 85A and 85C structures confirm binding orientation and conserved substrate specificity.
J Biol Chem. 2004 Aug 27;279(35):36771-7. doi: 10.1074/jbc.M400811200. Epub 2004 Jun 10.
8
Cyclipostins and cyclophostin analogs inhibit the antigen 85C from both and .
J Biol Chem. 2018 Feb 23;293(8):2755-2769. doi: 10.1074/jbc.RA117.000760. Epub 2018 Jan 4.
10
Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives.
ACS Infect Dis. 2017 May 12;3(5):378-387. doi: 10.1021/acsinfecdis.7b00003. Epub 2017 Mar 21.

引用本文的文献

1
Loss of disrupts plasma membrane domains and promotes free mycolic acid accumulation in mycobacteria.
bioRxiv. 2025 Aug 5:2025.08.05.668640. doi: 10.1101/2025.08.05.668640.
3
Synthesis and Evaluation of Trehalose-Based Mertansine Warheads for Bacillus Calmette-Guérin Delivery of Anticancer Agents.
Chembiochem. 2025 Sep 12;26(16):e202500390. doi: 10.1002/cbic.202500390. Epub 2025 Jul 9.
4
Synthetic mycolates derivatives to decipher protein mycoloylation, a unique post-translational modification in bacteria.
J Biol Chem. 2025 Mar;301(3):108243. doi: 10.1016/j.jbc.2025.108243. Epub 2025 Jan 27.
5
analysis for the development of multi-epitope vaccines against .
Front Immunol. 2024 Nov 18;15:1474346. doi: 10.3389/fimmu.2024.1474346. eCollection 2024.
6
B Cell and Antibody Responses in Bovine Tuberculosis.
Antibodies (Basel). 2024 Oct 9;13(4):84. doi: 10.3390/antib13040084.
8
Mycobacterium abscessus extracellular vesicles increase mycobacterial resistance to clarithromycin in vitro.
Proteomics. 2024 May;24(10):e2300332. doi: 10.1002/pmic.202300332. Epub 2024 Jan 18.
10
Molecular Mechanisms of MmpL3 Function and Inhibition.
Microb Drug Resist. 2023 May;29(5):190-212. doi: 10.1089/mdr.2021.0424. Epub 2023 Feb 21.

本文引用的文献

2
Carbohydrate-aromatic interactions.
Acc Chem Res. 2013 Apr 16;46(4):946-54. doi: 10.1021/ar300024d. Epub 2012 Jun 15.
4
Novel mycobacteria antigen 85 complex binding motif on fibronectin.
J Biol Chem. 2012 Jan 13;287(3):1892-902. doi: 10.1074/jbc.M111.298687. Epub 2011 Nov 29.
6
Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases.
Crit Rev Biotechnol. 2012 Jun;32(2):93-107. doi: 10.3109/07388551.2011.561537. Epub 2011 Jun 28.
7
Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis.
Nat Chem Biol. 2011 Apr;7(4):228-35. doi: 10.1038/nchembio.539. Epub 2011 Mar 6.
8
Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved.
Nat Genet. 2010 Jun;42(6):498-503. doi: 10.1038/ng.590. Epub 2010 May 23.
10
Evasion and subversion of antigen presentation by Mycobacterium tuberculosis.
Tissue Antigens. 2009 Sep;74(3):189-204. doi: 10.1111/j.1399-0039.2009.01301.x. Epub 2009 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验