Suppr超能文献

过氧化物酶的非凡催化能力:关于快速硫醇氧化步骤的实验与量子力学/分子力学联合研究

The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step.

作者信息

Zeida Ari, Reyes Anibal M, Lebrero Mariano C G, Radi Rafael, Trujillo Madia, Estrin Darío A

机构信息

Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina.

出版信息

Chem Commun (Camb). 2014 Sep 11;50(70):10070-3. doi: 10.1039/c4cc02899f.

Abstract

Peroxiredoxins (Prxs) catalyze the reduction of peroxides, a process of key relevance in a variety of cellular processes. The first step in the catalytic cycle of all Prxs is the oxidation of a cysteine residue to sulfenic acid, which occurs 10(3)-10(7) times faster than in free cysteine. We present an experimental kinetics and hybrid QM/MM investigation to explore the reaction of Prxs with H2O2 using alkyl hydroperoxide reductase E from Mycobacterium tuberculosis as a Prx model. We report for the first time the thermodynamic activation parameters of H2O2 reduction using Prx, which show that protein significantly lowers the activation enthalpy, with an unfavourable entropic effect, compared to the uncatalyzed reaction. The QM/MM simulations show that the remarkable catalytic effects responsible for the fast H2O2 reduction in Prxs are mainly due to an active-site arrangement, which establishes a complex hydrogen bond network activating both reactive species.

摘要

过氧化物酶(Prxs)催化过氧化物的还原,这是一个在多种细胞过程中具有关键意义的过程。所有Prxs催化循环的第一步是半胱氨酸残基氧化为亚磺酸,其发生速度比游离半胱氨酸快10³-10⁷倍。我们进行了实验动力学和QM/MM混合研究,以结核分枝杆菌的烷基过氧化氢还原酶E作为Prx模型,探索Prxs与H₂O₂的反应。我们首次报告了使用Prx进行H₂O₂还原的热力学活化参数,结果表明,与未催化反应相比,蛋白质显著降低了活化焓,但具有不利的熵效应。QM/MM模拟表明,Prxs中负责快速H₂O₂还原的显著催化作用主要归因于活性位点排列,该排列建立了一个复杂的氢键网络,激活了两种反应性物种。

相似文献

2
Multiscale Modeling of Thiol Overoxidation in Peroxiredoxins by Hydrogen Peroxide.
J Chem Inf Model. 2020 Feb 24;60(2):843-853. doi: 10.1021/acs.jcim.9b00817. Epub 2019 Dec 2.
3
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.
4
The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs.
Antioxid Redox Signal. 2018 Mar 1;28(7):558-573. doi: 10.1089/ars.2017.7162. Epub 2017 Jul 17.
5
Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from .
J Biol Chem. 2019 Sep 13;294(37):13593-13605. doi: 10.1074/jbc.RA119.008883. Epub 2019 Jul 16.
7
The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.
J Biol Chem. 2019 Sep 20;294(38):14055-14067. doi: 10.1074/jbc.RA119.008825. Epub 2019 Jul 30.
8
Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols.
Chem Rev. 2019 Oct 9;119(19):10829-10855. doi: 10.1021/acs.chemrev.9b00371. Epub 2019 Sep 9.
9
The Role of Peroxiredoxins in the Transduction of HO Signals.
Antioxid Redox Signal. 2018 Mar 1;28(7):537-557. doi: 10.1089/ars.2017.7167. Epub 2017 Jul 10.
10
Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.
Biochemistry. 2018 Jun 19;57(24):3416-3424. doi: 10.1021/acs.biochem.8b00188. Epub 2018 Mar 30.

引用本文的文献

1
Interaction between 1-Cys peroxiredoxin and ascorbate in the response to HO exposure in Pseudomonas aeruginosa.
Redox Biol. 2025 Jul;84:103658. doi: 10.1016/j.redox.2025.103658. Epub 2025 May 8.
2
Fifty years of biophysics in Argentina.
Biophys Rev. 2023 Aug 25;15(4):431-438. doi: 10.1007/s12551-023-01114-0. eCollection 2023 Aug.
4
The Role of Peroxiredoxins in Cancer Development.
Biology (Basel). 2023 Apr 28;12(5):666. doi: 10.3390/biology12050666.
6
Essential Roles of Peroxiredoxin IV in Inflammation and Cancer.
Molecules. 2022 Oct 2;27(19):6513. doi: 10.3390/molecules27196513.
10
Acidity and nucleophilic reactivity of glutathione persulfide.
J Biol Chem. 2020 Nov 13;295(46):15466-15481. doi: 10.1074/jbc.RA120.014728. Epub 2020 Sep 1.

本文引用的文献

2
Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study.
Arch Biochem Biophys. 2013 Nov 1;539(1):81-6. doi: 10.1016/j.abb.2013.08.016. Epub 2013 Sep 4.
3
Peroxiredoxins as preferential targets in H2O2-induced signaling.
Methods Enzymol. 2013;527:41-63. doi: 10.1016/B978-0-12-405882-8.00003-9.
4
Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin.
J Mol Biol. 2012 Nov 23;424(1-2):28-41. doi: 10.1016/j.jmb.2012.09.008. Epub 2012 Sep 15.
5
The increasing role of QM/MM in drug discovery.
Adv Protein Chem Struct Biol. 2012;87:337-62. doi: 10.1016/B978-0-12-398312-1.00011-1.
6
Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: challenging the SN2 paradigm.
Chem Res Toxicol. 2012 Mar 19;25(3):741-6. doi: 10.1021/tx200540z. Epub 2012 Feb 16.
7
Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation.
Free Radic Biol Med. 2011 Jul 15;51(2):464-73. doi: 10.1016/j.freeradbiomed.2011.04.023. Epub 2011 Apr 17.
8
Factors affecting protein thiol reactivity and specificity in peroxide reduction.
Chem Res Toxicol. 2011 Apr 18;24(4):434-50. doi: 10.1021/tx100413v. Epub 2011 Mar 10.
9
Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study.
J Biol Chem. 2011 May 20;286(20):18048-55. doi: 10.1074/jbc.M111.232355. Epub 2011 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验